MagickCore  7.0.10
feature.c
Go to the documentation of this file.
1 /*
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % %
4 % %
5 % %
6 % FFFFF EEEEE AAA TTTTT U U RRRR EEEEE %
7 % F E A A T U U R R E %
8 % FFF EEE AAAAA T U U RRRR EEE %
9 % F E A A T U U R R E %
10 % F EEEEE A A T UUU R R EEEEE %
11 % %
12 % %
13 % MagickCore Image Feature Methods %
14 % %
15 % Software Design %
16 % Cristy %
17 % July 1992 %
18 % %
19 % %
20 % Copyright 1999-2020 ImageMagick Studio LLC, a non-profit organization %
21 % dedicated to making software imaging solutions freely available. %
22 % %
23 % You may not use this file except in compliance with the License. You may %
24 % obtain a copy of the License at %
25 % %
26 % https://imagemagick.org/script/license.php %
27 % %
28 % Unless required by applicable law or agreed to in writing, software %
29 % distributed under the License is distributed on an "AS IS" BASIS, %
30 % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
31 % See the License for the specific language governing permissions and %
32 % limitations under the License. %
33 % %
34 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
35 %
36 %
37 %
38 */
39 
40 /*
41  Include declarations.
42 */
43 #include "MagickCore/studio.h"
44 #include "MagickCore/animate.h"
45 #include "MagickCore/artifact.h"
46 #include "MagickCore/blob.h"
48 #include "MagickCore/cache.h"
50 #include "MagickCore/cache-view.h"
51 #include "MagickCore/channel.h"
52 #include "MagickCore/client.h"
53 #include "MagickCore/color.h"
55 #include "MagickCore/colorspace.h"
57 #include "MagickCore/composite.h"
59 #include "MagickCore/compress.h"
60 #include "MagickCore/constitute.h"
61 #include "MagickCore/display.h"
62 #include "MagickCore/draw.h"
63 #include "MagickCore/enhance.h"
64 #include "MagickCore/exception.h"
66 #include "MagickCore/feature.h"
67 #include "MagickCore/gem.h"
68 #include "MagickCore/geometry.h"
69 #include "MagickCore/list.h"
71 #include "MagickCore/magic.h"
72 #include "MagickCore/magick.h"
73 #include "MagickCore/matrix.h"
74 #include "MagickCore/memory_.h"
75 #include "MagickCore/module.h"
76 #include "MagickCore/monitor.h"
79 #include "MagickCore/option.h"
80 #include "MagickCore/paint.h"
82 #include "MagickCore/profile.h"
83 #include "MagickCore/property.h"
84 #include "MagickCore/quantize.h"
86 #include "MagickCore/random_.h"
87 #include "MagickCore/resource_.h"
88 #include "MagickCore/segment.h"
89 #include "MagickCore/semaphore.h"
91 #include "MagickCore/string_.h"
93 #include "MagickCore/timer.h"
94 #include "MagickCore/utility.h"
95 #include "MagickCore/version.h"
96 
97 /*
98 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
99 % %
100 % %
101 % %
102 % C a n n y E d g e I m a g e %
103 % %
104 % %
105 % %
106 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
107 %
108 % CannyEdgeImage() uses a multi-stage algorithm to detect a wide range of
109 % edges in images.
110 %
111 % The format of the CannyEdgeImage method is:
112 %
113 % Image *CannyEdgeImage(const Image *image,const double radius,
114 % const double sigma,const double lower_percent,
115 % const double upper_percent,ExceptionInfo *exception)
116 %
117 % A description of each parameter follows:
118 %
119 % o image: the image.
120 %
121 % o radius: the radius of the gaussian smoothing filter.
122 %
123 % o sigma: the sigma of the gaussian smoothing filter.
124 %
125 % o lower_percent: percentage of edge pixels in the lower threshold.
126 %
127 % o upper_percent: percentage of edge pixels in the upper threshold.
128 %
129 % o exception: return any errors or warnings in this structure.
130 %
131 */
132 
133 typedef struct _CannyInfo
134 {
135  double
137  intensity;
138 
139  int
141 
142  ssize_t
143  x,
144  y;
145 } CannyInfo;
146 
147 static inline MagickBooleanType IsAuthenticPixel(const Image *image,
148  const ssize_t x,const ssize_t y)
149 {
150  if ((x < 0) || (x >= (ssize_t) image->columns))
151  return(MagickFalse);
152  if ((y < 0) || (y >= (ssize_t) image->rows))
153  return(MagickFalse);
154  return(MagickTrue);
155 }
156 
157 static MagickBooleanType TraceEdges(Image *edge_image,CacheView *edge_view,
158  MatrixInfo *canny_cache,const ssize_t x,const ssize_t y,
159  const double lower_threshold,ExceptionInfo *exception)
160 {
161  CannyInfo
162  edge,
163  pixel;
164 
166  status;
167 
168  register Quantum
169  *q;
170 
171  register ssize_t
172  i;
173 
174  q=GetCacheViewAuthenticPixels(edge_view,x,y,1,1,exception);
175  if (q == (Quantum *) NULL)
176  return(MagickFalse);
177  *q=QuantumRange;
178  status=SyncCacheViewAuthenticPixels(edge_view,exception);
179  if (status == MagickFalse)
180  return(MagickFalse);
181  if (GetMatrixElement(canny_cache,0,0,&edge) == MagickFalse)
182  return(MagickFalse);
183  edge.x=x;
184  edge.y=y;
185  if (SetMatrixElement(canny_cache,0,0,&edge) == MagickFalse)
186  return(MagickFalse);
187  for (i=1; i != 0; )
188  {
189  ssize_t
190  v;
191 
192  i--;
193  status=GetMatrixElement(canny_cache,i,0,&edge);
194  if (status == MagickFalse)
195  return(MagickFalse);
196  for (v=(-1); v <= 1; v++)
197  {
198  ssize_t
199  u;
200 
201  for (u=(-1); u <= 1; u++)
202  {
203  if ((u == 0) && (v == 0))
204  continue;
205  if (IsAuthenticPixel(edge_image,edge.x+u,edge.y+v) == MagickFalse)
206  continue;
207  /*
208  Not an edge if gradient value is below the lower threshold.
209  */
210  q=GetCacheViewAuthenticPixels(edge_view,edge.x+u,edge.y+v,1,1,
211  exception);
212  if (q == (Quantum *) NULL)
213  return(MagickFalse);
214  status=GetMatrixElement(canny_cache,edge.x+u,edge.y+v,&pixel);
215  if (status == MagickFalse)
216  return(MagickFalse);
217  if ((GetPixelIntensity(edge_image,q) == 0.0) &&
218  (pixel.intensity >= lower_threshold))
219  {
220  *q=QuantumRange;
221  status=SyncCacheViewAuthenticPixels(edge_view,exception);
222  if (status == MagickFalse)
223  return(MagickFalse);
224  edge.x+=u;
225  edge.y+=v;
226  status=SetMatrixElement(canny_cache,i,0,&edge);
227  if (status == MagickFalse)
228  return(MagickFalse);
229  i++;
230  }
231  }
232  }
233  }
234  return(MagickTrue);
235 }
236 
237 MagickExport Image *CannyEdgeImage(const Image *image,const double radius,
238  const double sigma,const double lower_percent,const double upper_percent,
239  ExceptionInfo *exception)
240 {
241 #define CannyEdgeImageTag "CannyEdge/Image"
242 
243  CacheView
244  *edge_view;
245 
246  CannyInfo
247  element;
248 
249  char
250  geometry[MagickPathExtent];
251 
252  double
253  lower_threshold,
254  max,
255  min,
256  upper_threshold;
257 
258  Image
259  *edge_image;
260 
261  KernelInfo
262  *kernel_info;
263 
265  status;
266 
268  progress;
269 
270  MatrixInfo
271  *canny_cache;
272 
273  ssize_t
274  y;
275 
276  assert(image != (const Image *) NULL);
277  assert(image->signature == MagickCoreSignature);
278  if (image->debug != MagickFalse)
279  (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
280  assert(exception != (ExceptionInfo *) NULL);
281  assert(exception->signature == MagickCoreSignature);
282  /*
283  Filter out noise.
284  */
285  (void) FormatLocaleString(geometry,MagickPathExtent,
286  "blur:%.20gx%.20g;blur:%.20gx%.20g+90",radius,sigma,radius,sigma);
287  kernel_info=AcquireKernelInfo(geometry,exception);
288  if (kernel_info == (KernelInfo *) NULL)
289  ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
290  edge_image=MorphologyImage(image,ConvolveMorphology,1,kernel_info,exception);
291  kernel_info=DestroyKernelInfo(kernel_info);
292  if (edge_image == (Image *) NULL)
293  return((Image *) NULL);
294  if (TransformImageColorspace(edge_image,GRAYColorspace,exception) == MagickFalse)
295  {
296  edge_image=DestroyImage(edge_image);
297  return((Image *) NULL);
298  }
299  (void) SetImageAlphaChannel(edge_image,OffAlphaChannel,exception);
300  /*
301  Find the intensity gradient of the image.
302  */
303  canny_cache=AcquireMatrixInfo(edge_image->columns,edge_image->rows,
304  sizeof(CannyInfo),exception);
305  if (canny_cache == (MatrixInfo *) NULL)
306  {
307  edge_image=DestroyImage(edge_image);
308  return((Image *) NULL);
309  }
310  status=MagickTrue;
311  edge_view=AcquireVirtualCacheView(edge_image,exception);
312 #if defined(MAGICKCORE_OPENMP_SUPPORT)
313  #pragma omp parallel for schedule(static) shared(status) \
314  magick_number_threads(edge_image,edge_image,edge_image->rows,1)
315 #endif
316  for (y=0; y < (ssize_t) edge_image->rows; y++)
317  {
318  register const Quantum
319  *magick_restrict p;
320 
321  register ssize_t
322  x;
323 
324  if (status == MagickFalse)
325  continue;
326  p=GetCacheViewVirtualPixels(edge_view,0,y,edge_image->columns+1,2,
327  exception);
328  if (p == (const Quantum *) NULL)
329  {
330  status=MagickFalse;
331  continue;
332  }
333  for (x=0; x < (ssize_t) edge_image->columns; x++)
334  {
335  CannyInfo
336  pixel;
337 
338  double
339  dx,
340  dy;
341 
342  register const Quantum
343  *magick_restrict kernel_pixels;
344 
345  ssize_t
346  v;
347 
348  static double
349  Gx[2][2] =
350  {
351  { -1.0, +1.0 },
352  { -1.0, +1.0 }
353  },
354  Gy[2][2] =
355  {
356  { +1.0, +1.0 },
357  { -1.0, -1.0 }
358  };
359 
360  (void) memset(&pixel,0,sizeof(pixel));
361  dx=0.0;
362  dy=0.0;
363  kernel_pixels=p;
364  for (v=0; v < 2; v++)
365  {
366  ssize_t
367  u;
368 
369  for (u=0; u < 2; u++)
370  {
371  double
372  intensity;
373 
374  intensity=GetPixelIntensity(edge_image,kernel_pixels+u);
375  dx+=0.5*Gx[v][u]*intensity;
376  dy+=0.5*Gy[v][u]*intensity;
377  }
378  kernel_pixels+=edge_image->columns+1;
379  }
380  pixel.magnitude=hypot(dx,dy);
381  pixel.orientation=0;
382  if (fabs(dx) > MagickEpsilon)
383  {
384  double
385  slope;
386 
387  slope=dy/dx;
388  if (slope < 0.0)
389  {
390  if (slope < -2.41421356237)
391  pixel.orientation=0;
392  else
393  if (slope < -0.414213562373)
394  pixel.orientation=1;
395  else
396  pixel.orientation=2;
397  }
398  else
399  {
400  if (slope > 2.41421356237)
401  pixel.orientation=0;
402  else
403  if (slope > 0.414213562373)
404  pixel.orientation=3;
405  else
406  pixel.orientation=2;
407  }
408  }
409  if (SetMatrixElement(canny_cache,x,y,&pixel) == MagickFalse)
410  continue;
411  p+=GetPixelChannels(edge_image);
412  }
413  }
414  edge_view=DestroyCacheView(edge_view);
415  /*
416  Non-maxima suppression, remove pixels that are not considered to be part
417  of an edge.
418  */
419  progress=0;
420  (void) GetMatrixElement(canny_cache,0,0,&element);
421  max=element.intensity;
422  min=element.intensity;
423  edge_view=AcquireAuthenticCacheView(edge_image,exception);
424 #if defined(MAGICKCORE_OPENMP_SUPPORT)
425  #pragma omp parallel for schedule(static) shared(status) \
426  magick_number_threads(edge_image,edge_image,edge_image->rows,1)
427 #endif
428  for (y=0; y < (ssize_t) edge_image->rows; y++)
429  {
430  register Quantum
431  *magick_restrict q;
432 
433  register ssize_t
434  x;
435 
436  if (status == MagickFalse)
437  continue;
438  q=GetCacheViewAuthenticPixels(edge_view,0,y,edge_image->columns,1,
439  exception);
440  if (q == (Quantum *) NULL)
441  {
442  status=MagickFalse;
443  continue;
444  }
445  for (x=0; x < (ssize_t) edge_image->columns; x++)
446  {
447  CannyInfo
448  alpha_pixel,
449  beta_pixel,
450  pixel;
451 
452  (void) GetMatrixElement(canny_cache,x,y,&pixel);
453  switch (pixel.orientation)
454  {
455  case 0:
456  default:
457  {
458  /*
459  0 degrees, north and south.
460  */
461  (void) GetMatrixElement(canny_cache,x,y-1,&alpha_pixel);
462  (void) GetMatrixElement(canny_cache,x,y+1,&beta_pixel);
463  break;
464  }
465  case 1:
466  {
467  /*
468  45 degrees, northwest and southeast.
469  */
470  (void) GetMatrixElement(canny_cache,x-1,y-1,&alpha_pixel);
471  (void) GetMatrixElement(canny_cache,x+1,y+1,&beta_pixel);
472  break;
473  }
474  case 2:
475  {
476  /*
477  90 degrees, east and west.
478  */
479  (void) GetMatrixElement(canny_cache,x-1,y,&alpha_pixel);
480  (void) GetMatrixElement(canny_cache,x+1,y,&beta_pixel);
481  break;
482  }
483  case 3:
484  {
485  /*
486  135 degrees, northeast and southwest.
487  */
488  (void) GetMatrixElement(canny_cache,x+1,y-1,&beta_pixel);
489  (void) GetMatrixElement(canny_cache,x-1,y+1,&alpha_pixel);
490  break;
491  }
492  }
493  pixel.intensity=pixel.magnitude;
494  if ((pixel.magnitude < alpha_pixel.magnitude) ||
495  (pixel.magnitude < beta_pixel.magnitude))
496  pixel.intensity=0;
497  (void) SetMatrixElement(canny_cache,x,y,&pixel);
498 #if defined(MAGICKCORE_OPENMP_SUPPORT)
499  #pragma omp critical (MagickCore_CannyEdgeImage)
500 #endif
501  {
502  if (pixel.intensity < min)
503  min=pixel.intensity;
504  if (pixel.intensity > max)
505  max=pixel.intensity;
506  }
507  *q=0;
508  q+=GetPixelChannels(edge_image);
509  }
510  if (SyncCacheViewAuthenticPixels(edge_view,exception) == MagickFalse)
511  status=MagickFalse;
512  }
513  edge_view=DestroyCacheView(edge_view);
514  /*
515  Estimate hysteresis threshold.
516  */
517  lower_threshold=lower_percent*(max-min)+min;
518  upper_threshold=upper_percent*(max-min)+min;
519  /*
520  Hysteresis threshold.
521  */
522  edge_view=AcquireAuthenticCacheView(edge_image,exception);
523  for (y=0; y < (ssize_t) edge_image->rows; y++)
524  {
525  register ssize_t
526  x;
527 
528  if (status == MagickFalse)
529  continue;
530  for (x=0; x < (ssize_t) edge_image->columns; x++)
531  {
532  CannyInfo
533  pixel;
534 
535  register const Quantum
536  *magick_restrict p;
537 
538  /*
539  Edge if pixel gradient higher than upper threshold.
540  */
541  p=GetCacheViewVirtualPixels(edge_view,x,y,1,1,exception);
542  if (p == (const Quantum *) NULL)
543  continue;
544  status=GetMatrixElement(canny_cache,x,y,&pixel);
545  if (status == MagickFalse)
546  continue;
547  if ((GetPixelIntensity(edge_image,p) == 0.0) &&
548  (pixel.intensity >= upper_threshold))
549  status=TraceEdges(edge_image,edge_view,canny_cache,x,y,lower_threshold,
550  exception);
551  }
552  if (image->progress_monitor != (MagickProgressMonitor) NULL)
553  {
555  proceed;
556 
557 #if defined(MAGICKCORE_OPENMP_SUPPORT)
558  #pragma omp atomic
559 #endif
560  progress++;
561  proceed=SetImageProgress(image,CannyEdgeImageTag,progress,image->rows);
562  if (proceed == MagickFalse)
563  status=MagickFalse;
564  }
565  }
566  edge_view=DestroyCacheView(edge_view);
567  /*
568  Free resources.
569  */
570  canny_cache=DestroyMatrixInfo(canny_cache);
571  return(edge_image);
572 }
573 
574 /*
575 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
576 % %
577 % %
578 % %
579 % G e t I m a g e F e a t u r e s %
580 % %
581 % %
582 % %
583 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
584 %
585 % GetImageFeatures() returns features for each channel in the image in
586 % each of four directions (horizontal, vertical, left and right diagonals)
587 % for the specified distance. The features include the angular second
588 % moment, contrast, correlation, sum of squares: variance, inverse difference
589 % moment, sum average, sum varience, sum entropy, entropy, difference variance,
590 % difference entropy, information measures of correlation 1, information
591 % measures of correlation 2, and maximum correlation coefficient. You can
592 % access the red channel contrast, for example, like this:
593 %
594 % channel_features=GetImageFeatures(image,1,exception);
595 % contrast=channel_features[RedPixelChannel].contrast[0];
596 %
597 % Use MagickRelinquishMemory() to free the features buffer.
598 %
599 % The format of the GetImageFeatures method is:
600 %
601 % ChannelFeatures *GetImageFeatures(const Image *image,
602 % const size_t distance,ExceptionInfo *exception)
603 %
604 % A description of each parameter follows:
605 %
606 % o image: the image.
607 %
608 % o distance: the distance.
609 %
610 % o exception: return any errors or warnings in this structure.
611 %
612 */
613 
614 static inline double MagickLog10(const double x)
615 {
616 #define Log10Epsilon (1.0e-11)
617 
618  if (fabs(x) < Log10Epsilon)
619  return(log10(Log10Epsilon));
620  return(log10(fabs(x)));
621 }
622 
624  const size_t distance,ExceptionInfo *exception)
625 {
626  typedef struct _ChannelStatistics
627  {
628  PixelInfo
629  direction[4]; /* horizontal, vertical, left and right diagonals */
631 
632  CacheView
633  *image_view;
634 
636  *channel_features;
637 
639  **cooccurrence,
640  correlation,
641  *density_x,
642  *density_xy,
643  *density_y,
644  entropy_x,
645  entropy_xy,
646  entropy_xy1,
647  entropy_xy2,
648  entropy_y,
649  mean,
650  **Q,
651  *sum,
652  sum_squares,
653  variance;
654 
656  gray,
657  *grays;
658 
660  status;
661 
662  register ssize_t
663  i,
664  r;
665 
666  size_t
667  length;
668 
669  unsigned int
670  number_grays;
671 
672  assert(image != (Image *) NULL);
673  assert(image->signature == MagickCoreSignature);
674  if (image->debug != MagickFalse)
675  (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
676  if ((image->columns < (distance+1)) || (image->rows < (distance+1)))
677  return((ChannelFeatures *) NULL);
678  length=MaxPixelChannels+1UL;
679  channel_features=(ChannelFeatures *) AcquireQuantumMemory(length,
680  sizeof(*channel_features));
681  if (channel_features == (ChannelFeatures *) NULL)
682  ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed");
683  (void) memset(channel_features,0,length*
684  sizeof(*channel_features));
685  /*
686  Form grays.
687  */
688  grays=(PixelPacket *) AcquireQuantumMemory(MaxMap+1UL,sizeof(*grays));
689  if (grays == (PixelPacket *) NULL)
690  {
691  channel_features=(ChannelFeatures *) RelinquishMagickMemory(
692  channel_features);
693  (void) ThrowMagickException(exception,GetMagickModule(),
694  ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
695  return(channel_features);
696  }
697  for (i=0; i <= (ssize_t) MaxMap; i++)
698  {
699  grays[i].red=(~0U);
700  grays[i].green=(~0U);
701  grays[i].blue=(~0U);
702  grays[i].alpha=(~0U);
703  grays[i].black=(~0U);
704  }
705  status=MagickTrue;
706  image_view=AcquireVirtualCacheView(image,exception);
707 #if defined(MAGICKCORE_OPENMP_SUPPORT)
708  #pragma omp parallel for schedule(static) shared(status) \
709  magick_number_threads(image,image,image->rows,1)
710 #endif
711  for (r=0; r < (ssize_t) image->rows; r++)
712  {
713  register const Quantum
714  *magick_restrict p;
715 
716  register ssize_t
717  x;
718 
719  if (status == MagickFalse)
720  continue;
721  p=GetCacheViewVirtualPixels(image_view,0,r,image->columns,1,exception);
722  if (p == (const Quantum *) NULL)
723  {
724  status=MagickFalse;
725  continue;
726  }
727  for (x=0; x < (ssize_t) image->columns; x++)
728  {
729  grays[ScaleQuantumToMap(GetPixelRed(image,p))].red=
730  ScaleQuantumToMap(GetPixelRed(image,p));
731  grays[ScaleQuantumToMap(GetPixelGreen(image,p))].green=
732  ScaleQuantumToMap(GetPixelGreen(image,p));
733  grays[ScaleQuantumToMap(GetPixelBlue(image,p))].blue=
734  ScaleQuantumToMap(GetPixelBlue(image,p));
735  if (image->colorspace == CMYKColorspace)
736  grays[ScaleQuantumToMap(GetPixelBlack(image,p))].black=
737  ScaleQuantumToMap(GetPixelBlack(image,p));
738  if (image->alpha_trait != UndefinedPixelTrait)
739  grays[ScaleQuantumToMap(GetPixelAlpha(image,p))].alpha=
740  ScaleQuantumToMap(GetPixelAlpha(image,p));
741  p+=GetPixelChannels(image);
742  }
743  }
744  image_view=DestroyCacheView(image_view);
745  if (status == MagickFalse)
746  {
747  grays=(PixelPacket *) RelinquishMagickMemory(grays);
748  channel_features=(ChannelFeatures *) RelinquishMagickMemory(
749  channel_features);
750  return(channel_features);
751  }
752  (void) memset(&gray,0,sizeof(gray));
753  for (i=0; i <= (ssize_t) MaxMap; i++)
754  {
755  if (grays[i].red != ~0U)
756  grays[gray.red++].red=grays[i].red;
757  if (grays[i].green != ~0U)
758  grays[gray.green++].green=grays[i].green;
759  if (grays[i].blue != ~0U)
760  grays[gray.blue++].blue=grays[i].blue;
761  if (image->colorspace == CMYKColorspace)
762  if (grays[i].black != ~0U)
763  grays[gray.black++].black=grays[i].black;
764  if (image->alpha_trait != UndefinedPixelTrait)
765  if (grays[i].alpha != ~0U)
766  grays[gray.alpha++].alpha=grays[i].alpha;
767  }
768  /*
769  Allocate spatial dependence matrix.
770  */
771  number_grays=gray.red;
772  if (gray.green > number_grays)
773  number_grays=gray.green;
774  if (gray.blue > number_grays)
775  number_grays=gray.blue;
776  if (image->colorspace == CMYKColorspace)
777  if (gray.black > number_grays)
778  number_grays=gray.black;
779  if (image->alpha_trait != UndefinedPixelTrait)
780  if (gray.alpha > number_grays)
781  number_grays=gray.alpha;
782  cooccurrence=(ChannelStatistics **) AcquireQuantumMemory(number_grays,
783  sizeof(*cooccurrence));
784  density_x=(ChannelStatistics *) AcquireQuantumMemory(2*(number_grays+1),
785  sizeof(*density_x));
786  density_xy=(ChannelStatistics *) AcquireQuantumMemory(2*(number_grays+1),
787  sizeof(*density_xy));
788  density_y=(ChannelStatistics *) AcquireQuantumMemory(2*(number_grays+1),
789  sizeof(*density_y));
790  Q=(ChannelStatistics **) AcquireQuantumMemory(number_grays,sizeof(*Q));
791  sum=(ChannelStatistics *) AcquireQuantumMemory(number_grays,sizeof(*sum));
792  if ((cooccurrence == (ChannelStatistics **) NULL) ||
793  (density_x == (ChannelStatistics *) NULL) ||
794  (density_xy == (ChannelStatistics *) NULL) ||
795  (density_y == (ChannelStatistics *) NULL) ||
796  (Q == (ChannelStatistics **) NULL) ||
797  (sum == (ChannelStatistics *) NULL))
798  {
799  if (Q != (ChannelStatistics **) NULL)
800  {
801  for (i=0; i < (ssize_t) number_grays; i++)
804  }
805  if (sum != (ChannelStatistics *) NULL)
807  if (density_y != (ChannelStatistics *) NULL)
808  density_y=(ChannelStatistics *) RelinquishMagickMemory(density_y);
809  if (density_xy != (ChannelStatistics *) NULL)
810  density_xy=(ChannelStatistics *) RelinquishMagickMemory(density_xy);
811  if (density_x != (ChannelStatistics *) NULL)
812  density_x=(ChannelStatistics *) RelinquishMagickMemory(density_x);
813  if (cooccurrence != (ChannelStatistics **) NULL)
814  {
815  for (i=0; i < (ssize_t) number_grays; i++)
816  cooccurrence[i]=(ChannelStatistics *)
817  RelinquishMagickMemory(cooccurrence[i]);
818  cooccurrence=(ChannelStatistics **) RelinquishMagickMemory(
819  cooccurrence);
820  }
821  grays=(PixelPacket *) RelinquishMagickMemory(grays);
822  channel_features=(ChannelFeatures *) RelinquishMagickMemory(
823  channel_features);
824  (void) ThrowMagickException(exception,GetMagickModule(),
825  ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
826  return(channel_features);
827  }
828  (void) memset(&correlation,0,sizeof(correlation));
829  (void) memset(density_x,0,2*(number_grays+1)*sizeof(*density_x));
830  (void) memset(density_xy,0,2*(number_grays+1)*sizeof(*density_xy));
831  (void) memset(density_y,0,2*(number_grays+1)*sizeof(*density_y));
832  (void) memset(&mean,0,sizeof(mean));
833  (void) memset(sum,0,number_grays*sizeof(*sum));
834  (void) memset(&sum_squares,0,sizeof(sum_squares));
835  (void) memset(density_xy,0,2*number_grays*sizeof(*density_xy));
836  (void) memset(&entropy_x,0,sizeof(entropy_x));
837  (void) memset(&entropy_xy,0,sizeof(entropy_xy));
838  (void) memset(&entropy_xy1,0,sizeof(entropy_xy1));
839  (void) memset(&entropy_xy2,0,sizeof(entropy_xy2));
840  (void) memset(&entropy_y,0,sizeof(entropy_y));
841  (void) memset(&variance,0,sizeof(variance));
842  for (i=0; i < (ssize_t) number_grays; i++)
843  {
844  cooccurrence[i]=(ChannelStatistics *) AcquireQuantumMemory(number_grays,
845  sizeof(**cooccurrence));
846  Q[i]=(ChannelStatistics *) AcquireQuantumMemory(number_grays,sizeof(**Q));
847  if ((cooccurrence[i] == (ChannelStatistics *) NULL) ||
848  (Q[i] == (ChannelStatistics *) NULL))
849  break;
850  (void) memset(cooccurrence[i],0,number_grays*
851  sizeof(**cooccurrence));
852  (void) memset(Q[i],0,number_grays*sizeof(**Q));
853  }
854  if (i < (ssize_t) number_grays)
855  {
856  for (i--; i >= 0; i--)
857  {
858  if (Q[i] != (ChannelStatistics *) NULL)
860  if (cooccurrence[i] != (ChannelStatistics *) NULL)
861  cooccurrence[i]=(ChannelStatistics *)
862  RelinquishMagickMemory(cooccurrence[i]);
863  }
865  cooccurrence=(ChannelStatistics **) RelinquishMagickMemory(cooccurrence);
867  density_y=(ChannelStatistics *) RelinquishMagickMemory(density_y);
868  density_xy=(ChannelStatistics *) RelinquishMagickMemory(density_xy);
869  density_x=(ChannelStatistics *) RelinquishMagickMemory(density_x);
870  grays=(PixelPacket *) RelinquishMagickMemory(grays);
871  channel_features=(ChannelFeatures *) RelinquishMagickMemory(
872  channel_features);
873  (void) ThrowMagickException(exception,GetMagickModule(),
874  ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
875  return(channel_features);
876  }
877  /*
878  Initialize spatial dependence matrix.
879  */
880  status=MagickTrue;
881  image_view=AcquireVirtualCacheView(image,exception);
882  for (r=0; r < (ssize_t) image->rows; r++)
883  {
884  register const Quantum
885  *magick_restrict p;
886 
887  register ssize_t
888  x;
889 
890  ssize_t
891  offset,
892  u,
893  v;
894 
895  if (status == MagickFalse)
896  continue;
897  p=GetCacheViewVirtualPixels(image_view,-(ssize_t) distance,r,image->columns+
898  2*distance,distance+2,exception);
899  if (p == (const Quantum *) NULL)
900  {
901  status=MagickFalse;
902  continue;
903  }
904  p+=distance*GetPixelChannels(image);;
905  for (x=0; x < (ssize_t) image->columns; x++)
906  {
907  for (i=0; i < 4; i++)
908  {
909  switch (i)
910  {
911  case 0:
912  default:
913  {
914  /*
915  Horizontal adjacency.
916  */
917  offset=(ssize_t) distance;
918  break;
919  }
920  case 1:
921  {
922  /*
923  Vertical adjacency.
924  */
925  offset=(ssize_t) (image->columns+2*distance);
926  break;
927  }
928  case 2:
929  {
930  /*
931  Right diagonal adjacency.
932  */
933  offset=(ssize_t) ((image->columns+2*distance)-distance);
934  break;
935  }
936  case 3:
937  {
938  /*
939  Left diagonal adjacency.
940  */
941  offset=(ssize_t) ((image->columns+2*distance)+distance);
942  break;
943  }
944  }
945  u=0;
946  v=0;
947  while (grays[u].red != ScaleQuantumToMap(GetPixelRed(image,p)))
948  u++;
949  while (grays[v].red != ScaleQuantumToMap(GetPixelRed(image,p+offset*GetPixelChannels(image))))
950  v++;
951  cooccurrence[u][v].direction[i].red++;
952  cooccurrence[v][u].direction[i].red++;
953  u=0;
954  v=0;
955  while (grays[u].green != ScaleQuantumToMap(GetPixelGreen(image,p)))
956  u++;
957  while (grays[v].green != ScaleQuantumToMap(GetPixelGreen(image,p+offset*GetPixelChannels(image))))
958  v++;
959  cooccurrence[u][v].direction[i].green++;
960  cooccurrence[v][u].direction[i].green++;
961  u=0;
962  v=0;
963  while (grays[u].blue != ScaleQuantumToMap(GetPixelBlue(image,p)))
964  u++;
965  while (grays[v].blue != ScaleQuantumToMap(GetPixelBlue(image,p+offset*GetPixelChannels(image))))
966  v++;
967  cooccurrence[u][v].direction[i].blue++;
968  cooccurrence[v][u].direction[i].blue++;
969  if (image->colorspace == CMYKColorspace)
970  {
971  u=0;
972  v=0;
973  while (grays[u].black != ScaleQuantumToMap(GetPixelBlack(image,p)))
974  u++;
975  while (grays[v].black != ScaleQuantumToMap(GetPixelBlack(image,p+offset*GetPixelChannels(image))))
976  v++;
977  cooccurrence[u][v].direction[i].black++;
978  cooccurrence[v][u].direction[i].black++;
979  }
980  if (image->alpha_trait != UndefinedPixelTrait)
981  {
982  u=0;
983  v=0;
984  while (grays[u].alpha != ScaleQuantumToMap(GetPixelAlpha(image,p)))
985  u++;
986  while (grays[v].alpha != ScaleQuantumToMap(GetPixelAlpha(image,p+offset*GetPixelChannels(image))))
987  v++;
988  cooccurrence[u][v].direction[i].alpha++;
989  cooccurrence[v][u].direction[i].alpha++;
990  }
991  }
992  p+=GetPixelChannels(image);
993  }
994  }
995  grays=(PixelPacket *) RelinquishMagickMemory(grays);
996  image_view=DestroyCacheView(image_view);
997  if (status == MagickFalse)
998  {
999  for (i=0; i < (ssize_t) number_grays; i++)
1000  cooccurrence[i]=(ChannelStatistics *)
1001  RelinquishMagickMemory(cooccurrence[i]);
1002  cooccurrence=(ChannelStatistics **) RelinquishMagickMemory(cooccurrence);
1003  channel_features=(ChannelFeatures *) RelinquishMagickMemory(
1004  channel_features);
1005  (void) ThrowMagickException(exception,GetMagickModule(),
1006  ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
1007  return(channel_features);
1008  }
1009  /*
1010  Normalize spatial dependence matrix.
1011  */
1012  for (i=0; i < 4; i++)
1013  {
1014  double
1015  normalize;
1016 
1017  register ssize_t
1018  y;
1019 
1020  switch (i)
1021  {
1022  case 0:
1023  default:
1024  {
1025  /*
1026  Horizontal adjacency.
1027  */
1028  normalize=2.0*image->rows*(image->columns-distance);
1029  break;
1030  }
1031  case 1:
1032  {
1033  /*
1034  Vertical adjacency.
1035  */
1036  normalize=2.0*(image->rows-distance)*image->columns;
1037  break;
1038  }
1039  case 2:
1040  {
1041  /*
1042  Right diagonal adjacency.
1043  */
1044  normalize=2.0*(image->rows-distance)*(image->columns-distance);
1045  break;
1046  }
1047  case 3:
1048  {
1049  /*
1050  Left diagonal adjacency.
1051  */
1052  normalize=2.0*(image->rows-distance)*(image->columns-distance);
1053  break;
1054  }
1055  }
1056  normalize=PerceptibleReciprocal(normalize);
1057  for (y=0; y < (ssize_t) number_grays; y++)
1058  {
1059  register ssize_t
1060  x;
1061 
1062  for (x=0; x < (ssize_t) number_grays; x++)
1063  {
1064  cooccurrence[x][y].direction[i].red*=normalize;
1065  cooccurrence[x][y].direction[i].green*=normalize;
1066  cooccurrence[x][y].direction[i].blue*=normalize;
1067  if (image->colorspace == CMYKColorspace)
1068  cooccurrence[x][y].direction[i].black*=normalize;
1069  if (image->alpha_trait != UndefinedPixelTrait)
1070  cooccurrence[x][y].direction[i].alpha*=normalize;
1071  }
1072  }
1073  }
1074  /*
1075  Compute texture features.
1076  */
1077 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1078  #pragma omp parallel for schedule(static) shared(status) \
1079  magick_number_threads(image,image,number_grays,1)
1080 #endif
1081  for (i=0; i < 4; i++)
1082  {
1083  register ssize_t
1084  y;
1085 
1086  for (y=0; y < (ssize_t) number_grays; y++)
1087  {
1088  register ssize_t
1089  x;
1090 
1091  for (x=0; x < (ssize_t) number_grays; x++)
1092  {
1093  /*
1094  Angular second moment: measure of homogeneity of the image.
1095  */
1096  channel_features[RedPixelChannel].angular_second_moment[i]+=
1097  cooccurrence[x][y].direction[i].red*
1098  cooccurrence[x][y].direction[i].red;
1099  channel_features[GreenPixelChannel].angular_second_moment[i]+=
1100  cooccurrence[x][y].direction[i].green*
1101  cooccurrence[x][y].direction[i].green;
1102  channel_features[BluePixelChannel].angular_second_moment[i]+=
1103  cooccurrence[x][y].direction[i].blue*
1104  cooccurrence[x][y].direction[i].blue;
1105  if (image->colorspace == CMYKColorspace)
1106  channel_features[BlackPixelChannel].angular_second_moment[i]+=
1107  cooccurrence[x][y].direction[i].black*
1108  cooccurrence[x][y].direction[i].black;
1109  if (image->alpha_trait != UndefinedPixelTrait)
1110  channel_features[AlphaPixelChannel].angular_second_moment[i]+=
1111  cooccurrence[x][y].direction[i].alpha*
1112  cooccurrence[x][y].direction[i].alpha;
1113  /*
1114  Correlation: measure of linear-dependencies in the image.
1115  */
1116  sum[y].direction[i].red+=cooccurrence[x][y].direction[i].red;
1117  sum[y].direction[i].green+=cooccurrence[x][y].direction[i].green;
1118  sum[y].direction[i].blue+=cooccurrence[x][y].direction[i].blue;
1119  if (image->colorspace == CMYKColorspace)
1120  sum[y].direction[i].black+=cooccurrence[x][y].direction[i].black;
1121  if (image->alpha_trait != UndefinedPixelTrait)
1122  sum[y].direction[i].alpha+=cooccurrence[x][y].direction[i].alpha;
1123  correlation.direction[i].red+=x*y*cooccurrence[x][y].direction[i].red;
1124  correlation.direction[i].green+=x*y*
1125  cooccurrence[x][y].direction[i].green;
1126  correlation.direction[i].blue+=x*y*
1127  cooccurrence[x][y].direction[i].blue;
1128  if (image->colorspace == CMYKColorspace)
1129  correlation.direction[i].black+=x*y*
1130  cooccurrence[x][y].direction[i].black;
1131  if (image->alpha_trait != UndefinedPixelTrait)
1132  correlation.direction[i].alpha+=x*y*
1133  cooccurrence[x][y].direction[i].alpha;
1134  /*
1135  Inverse Difference Moment.
1136  */
1137  channel_features[RedPixelChannel].inverse_difference_moment[i]+=
1138  cooccurrence[x][y].direction[i].red/((y-x)*(y-x)+1);
1139  channel_features[GreenPixelChannel].inverse_difference_moment[i]+=
1140  cooccurrence[x][y].direction[i].green/((y-x)*(y-x)+1);
1141  channel_features[BluePixelChannel].inverse_difference_moment[i]+=
1142  cooccurrence[x][y].direction[i].blue/((y-x)*(y-x)+1);
1143  if (image->colorspace == CMYKColorspace)
1144  channel_features[BlackPixelChannel].inverse_difference_moment[i]+=
1145  cooccurrence[x][y].direction[i].black/((y-x)*(y-x)+1);
1146  if (image->alpha_trait != UndefinedPixelTrait)
1147  channel_features[AlphaPixelChannel].inverse_difference_moment[i]+=
1148  cooccurrence[x][y].direction[i].alpha/((y-x)*(y-x)+1);
1149  /*
1150  Sum average.
1151  */
1152  density_xy[y+x+2].direction[i].red+=
1153  cooccurrence[x][y].direction[i].red;
1154  density_xy[y+x+2].direction[i].green+=
1155  cooccurrence[x][y].direction[i].green;
1156  density_xy[y+x+2].direction[i].blue+=
1157  cooccurrence[x][y].direction[i].blue;
1158  if (image->colorspace == CMYKColorspace)
1159  density_xy[y+x+2].direction[i].black+=
1160  cooccurrence[x][y].direction[i].black;
1161  if (image->alpha_trait != UndefinedPixelTrait)
1162  density_xy[y+x+2].direction[i].alpha+=
1163  cooccurrence[x][y].direction[i].alpha;
1164  /*
1165  Entropy.
1166  */
1167  channel_features[RedPixelChannel].entropy[i]-=
1168  cooccurrence[x][y].direction[i].red*
1169  MagickLog10(cooccurrence[x][y].direction[i].red);
1170  channel_features[GreenPixelChannel].entropy[i]-=
1171  cooccurrence[x][y].direction[i].green*
1172  MagickLog10(cooccurrence[x][y].direction[i].green);
1173  channel_features[BluePixelChannel].entropy[i]-=
1174  cooccurrence[x][y].direction[i].blue*
1175  MagickLog10(cooccurrence[x][y].direction[i].blue);
1176  if (image->colorspace == CMYKColorspace)
1177  channel_features[BlackPixelChannel].entropy[i]-=
1178  cooccurrence[x][y].direction[i].black*
1179  MagickLog10(cooccurrence[x][y].direction[i].black);
1180  if (image->alpha_trait != UndefinedPixelTrait)
1181  channel_features[AlphaPixelChannel].entropy[i]-=
1182  cooccurrence[x][y].direction[i].alpha*
1183  MagickLog10(cooccurrence[x][y].direction[i].alpha);
1184  /*
1185  Information Measures of Correlation.
1186  */
1187  density_x[x].direction[i].red+=cooccurrence[x][y].direction[i].red;
1188  density_x[x].direction[i].green+=cooccurrence[x][y].direction[i].green;
1189  density_x[x].direction[i].blue+=cooccurrence[x][y].direction[i].blue;
1190  if (image->alpha_trait != UndefinedPixelTrait)
1191  density_x[x].direction[i].alpha+=
1192  cooccurrence[x][y].direction[i].alpha;
1193  if (image->colorspace == CMYKColorspace)
1194  density_x[x].direction[i].black+=
1195  cooccurrence[x][y].direction[i].black;
1196  density_y[y].direction[i].red+=cooccurrence[x][y].direction[i].red;
1197  density_y[y].direction[i].green+=cooccurrence[x][y].direction[i].green;
1198  density_y[y].direction[i].blue+=cooccurrence[x][y].direction[i].blue;
1199  if (image->colorspace == CMYKColorspace)
1200  density_y[y].direction[i].black+=
1201  cooccurrence[x][y].direction[i].black;
1202  if (image->alpha_trait != UndefinedPixelTrait)
1203  density_y[y].direction[i].alpha+=
1204  cooccurrence[x][y].direction[i].alpha;
1205  }
1206  mean.direction[i].red+=y*sum[y].direction[i].red;
1207  sum_squares.direction[i].red+=y*y*sum[y].direction[i].red;
1208  mean.direction[i].green+=y*sum[y].direction[i].green;
1209  sum_squares.direction[i].green+=y*y*sum[y].direction[i].green;
1210  mean.direction[i].blue+=y*sum[y].direction[i].blue;
1211  sum_squares.direction[i].blue+=y*y*sum[y].direction[i].blue;
1212  if (image->colorspace == CMYKColorspace)
1213  {
1214  mean.direction[i].black+=y*sum[y].direction[i].black;
1215  sum_squares.direction[i].black+=y*y*sum[y].direction[i].black;
1216  }
1217  if (image->alpha_trait != UndefinedPixelTrait)
1218  {
1219  mean.direction[i].alpha+=y*sum[y].direction[i].alpha;
1220  sum_squares.direction[i].alpha+=y*y*sum[y].direction[i].alpha;
1221  }
1222  }
1223  /*
1224  Correlation: measure of linear-dependencies in the image.
1225  */
1226  channel_features[RedPixelChannel].correlation[i]=
1227  (correlation.direction[i].red-mean.direction[i].red*
1228  mean.direction[i].red)/(sqrt(sum_squares.direction[i].red-
1229  (mean.direction[i].red*mean.direction[i].red))*sqrt(
1230  sum_squares.direction[i].red-(mean.direction[i].red*
1231  mean.direction[i].red)));
1232  channel_features[GreenPixelChannel].correlation[i]=
1233  (correlation.direction[i].green-mean.direction[i].green*
1234  mean.direction[i].green)/(sqrt(sum_squares.direction[i].green-
1235  (mean.direction[i].green*mean.direction[i].green))*sqrt(
1236  sum_squares.direction[i].green-(mean.direction[i].green*
1237  mean.direction[i].green)));
1238  channel_features[BluePixelChannel].correlation[i]=
1239  (correlation.direction[i].blue-mean.direction[i].blue*
1240  mean.direction[i].blue)/(sqrt(sum_squares.direction[i].blue-
1241  (mean.direction[i].blue*mean.direction[i].blue))*sqrt(
1242  sum_squares.direction[i].blue-(mean.direction[i].blue*
1243  mean.direction[i].blue)));
1244  if (image->colorspace == CMYKColorspace)
1245  channel_features[BlackPixelChannel].correlation[i]=
1246  (correlation.direction[i].black-mean.direction[i].black*
1247  mean.direction[i].black)/(sqrt(sum_squares.direction[i].black-
1248  (mean.direction[i].black*mean.direction[i].black))*sqrt(
1249  sum_squares.direction[i].black-(mean.direction[i].black*
1250  mean.direction[i].black)));
1251  if (image->alpha_trait != UndefinedPixelTrait)
1252  channel_features[AlphaPixelChannel].correlation[i]=
1253  (correlation.direction[i].alpha-mean.direction[i].alpha*
1254  mean.direction[i].alpha)/(sqrt(sum_squares.direction[i].alpha-
1255  (mean.direction[i].alpha*mean.direction[i].alpha))*sqrt(
1256  sum_squares.direction[i].alpha-(mean.direction[i].alpha*
1257  mean.direction[i].alpha)));
1258  }
1259  /*
1260  Compute more texture features.
1261  */
1262 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1263  #pragma omp parallel for schedule(static) shared(status) \
1264  magick_number_threads(image,image,number_grays,1)
1265 #endif
1266  for (i=0; i < 4; i++)
1267  {
1268  register ssize_t
1269  x;
1270 
1271  for (x=2; x < (ssize_t) (2*number_grays); x++)
1272  {
1273  /*
1274  Sum average.
1275  */
1276  channel_features[RedPixelChannel].sum_average[i]+=
1277  x*density_xy[x].direction[i].red;
1278  channel_features[GreenPixelChannel].sum_average[i]+=
1279  x*density_xy[x].direction[i].green;
1280  channel_features[BluePixelChannel].sum_average[i]+=
1281  x*density_xy[x].direction[i].blue;
1282  if (image->colorspace == CMYKColorspace)
1283  channel_features[BlackPixelChannel].sum_average[i]+=
1284  x*density_xy[x].direction[i].black;
1285  if (image->alpha_trait != UndefinedPixelTrait)
1286  channel_features[AlphaPixelChannel].sum_average[i]+=
1287  x*density_xy[x].direction[i].alpha;
1288  /*
1289  Sum entropy.
1290  */
1291  channel_features[RedPixelChannel].sum_entropy[i]-=
1292  density_xy[x].direction[i].red*
1293  MagickLog10(density_xy[x].direction[i].red);
1294  channel_features[GreenPixelChannel].sum_entropy[i]-=
1295  density_xy[x].direction[i].green*
1296  MagickLog10(density_xy[x].direction[i].green);
1297  channel_features[BluePixelChannel].sum_entropy[i]-=
1298  density_xy[x].direction[i].blue*
1299  MagickLog10(density_xy[x].direction[i].blue);
1300  if (image->colorspace == CMYKColorspace)
1301  channel_features[BlackPixelChannel].sum_entropy[i]-=
1302  density_xy[x].direction[i].black*
1303  MagickLog10(density_xy[x].direction[i].black);
1304  if (image->alpha_trait != UndefinedPixelTrait)
1305  channel_features[AlphaPixelChannel].sum_entropy[i]-=
1306  density_xy[x].direction[i].alpha*
1307  MagickLog10(density_xy[x].direction[i].alpha);
1308  /*
1309  Sum variance.
1310  */
1311  channel_features[RedPixelChannel].sum_variance[i]+=
1312  (x-channel_features[RedPixelChannel].sum_entropy[i])*
1313  (x-channel_features[RedPixelChannel].sum_entropy[i])*
1314  density_xy[x].direction[i].red;
1315  channel_features[GreenPixelChannel].sum_variance[i]+=
1316  (x-channel_features[GreenPixelChannel].sum_entropy[i])*
1317  (x-channel_features[GreenPixelChannel].sum_entropy[i])*
1318  density_xy[x].direction[i].green;
1319  channel_features[BluePixelChannel].sum_variance[i]+=
1320  (x-channel_features[BluePixelChannel].sum_entropy[i])*
1321  (x-channel_features[BluePixelChannel].sum_entropy[i])*
1322  density_xy[x].direction[i].blue;
1323  if (image->colorspace == CMYKColorspace)
1324  channel_features[BlackPixelChannel].sum_variance[i]+=
1325  (x-channel_features[BlackPixelChannel].sum_entropy[i])*
1326  (x-channel_features[BlackPixelChannel].sum_entropy[i])*
1327  density_xy[x].direction[i].black;
1328  if (image->alpha_trait != UndefinedPixelTrait)
1329  channel_features[AlphaPixelChannel].sum_variance[i]+=
1330  (x-channel_features[AlphaPixelChannel].sum_entropy[i])*
1331  (x-channel_features[AlphaPixelChannel].sum_entropy[i])*
1332  density_xy[x].direction[i].alpha;
1333  }
1334  }
1335  /*
1336  Compute more texture features.
1337  */
1338 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1339  #pragma omp parallel for schedule(static) shared(status) \
1340  magick_number_threads(image,image,number_grays,1)
1341 #endif
1342  for (i=0; i < 4; i++)
1343  {
1344  register ssize_t
1345  y;
1346 
1347  for (y=0; y < (ssize_t) number_grays; y++)
1348  {
1349  register ssize_t
1350  x;
1351 
1352  for (x=0; x < (ssize_t) number_grays; x++)
1353  {
1354  /*
1355  Sum of Squares: Variance
1356  */
1357  variance.direction[i].red+=(y-mean.direction[i].red+1)*
1358  (y-mean.direction[i].red+1)*cooccurrence[x][y].direction[i].red;
1359  variance.direction[i].green+=(y-mean.direction[i].green+1)*
1360  (y-mean.direction[i].green+1)*cooccurrence[x][y].direction[i].green;
1361  variance.direction[i].blue+=(y-mean.direction[i].blue+1)*
1362  (y-mean.direction[i].blue+1)*cooccurrence[x][y].direction[i].blue;
1363  if (image->colorspace == CMYKColorspace)
1364  variance.direction[i].black+=(y-mean.direction[i].black+1)*
1365  (y-mean.direction[i].black+1)*cooccurrence[x][y].direction[i].black;
1366  if (image->alpha_trait != UndefinedPixelTrait)
1367  variance.direction[i].alpha+=(y-mean.direction[i].alpha+1)*
1368  (y-mean.direction[i].alpha+1)*
1369  cooccurrence[x][y].direction[i].alpha;
1370  /*
1371  Sum average / Difference Variance.
1372  */
1373  density_xy[MagickAbsoluteValue(y-x)].direction[i].red+=
1374  cooccurrence[x][y].direction[i].red;
1375  density_xy[MagickAbsoluteValue(y-x)].direction[i].green+=
1376  cooccurrence[x][y].direction[i].green;
1377  density_xy[MagickAbsoluteValue(y-x)].direction[i].blue+=
1378  cooccurrence[x][y].direction[i].blue;
1379  if (image->colorspace == CMYKColorspace)
1380  density_xy[MagickAbsoluteValue(y-x)].direction[i].black+=
1381  cooccurrence[x][y].direction[i].black;
1382  if (image->alpha_trait != UndefinedPixelTrait)
1383  density_xy[MagickAbsoluteValue(y-x)].direction[i].alpha+=
1384  cooccurrence[x][y].direction[i].alpha;
1385  /*
1386  Information Measures of Correlation.
1387  */
1388  entropy_xy.direction[i].red-=cooccurrence[x][y].direction[i].red*
1389  MagickLog10(cooccurrence[x][y].direction[i].red);
1390  entropy_xy.direction[i].green-=cooccurrence[x][y].direction[i].green*
1391  MagickLog10(cooccurrence[x][y].direction[i].green);
1392  entropy_xy.direction[i].blue-=cooccurrence[x][y].direction[i].blue*
1393  MagickLog10(cooccurrence[x][y].direction[i].blue);
1394  if (image->colorspace == CMYKColorspace)
1395  entropy_xy.direction[i].black-=cooccurrence[x][y].direction[i].black*
1396  MagickLog10(cooccurrence[x][y].direction[i].black);
1397  if (image->alpha_trait != UndefinedPixelTrait)
1398  entropy_xy.direction[i].alpha-=
1399  cooccurrence[x][y].direction[i].alpha*MagickLog10(
1400  cooccurrence[x][y].direction[i].alpha);
1401  entropy_xy1.direction[i].red-=(cooccurrence[x][y].direction[i].red*
1402  MagickLog10(density_x[x].direction[i].red*density_y[y].direction[i].red));
1403  entropy_xy1.direction[i].green-=(cooccurrence[x][y].direction[i].green*
1404  MagickLog10(density_x[x].direction[i].green*
1405  density_y[y].direction[i].green));
1406  entropy_xy1.direction[i].blue-=(cooccurrence[x][y].direction[i].blue*
1407  MagickLog10(density_x[x].direction[i].blue*density_y[y].direction[i].blue));
1408  if (image->colorspace == CMYKColorspace)
1409  entropy_xy1.direction[i].black-=(
1410  cooccurrence[x][y].direction[i].black*MagickLog10(
1411  density_x[x].direction[i].black*density_y[y].direction[i].black));
1412  if (image->alpha_trait != UndefinedPixelTrait)
1413  entropy_xy1.direction[i].alpha-=(
1414  cooccurrence[x][y].direction[i].alpha*MagickLog10(
1415  density_x[x].direction[i].alpha*density_y[y].direction[i].alpha));
1416  entropy_xy2.direction[i].red-=(density_x[x].direction[i].red*
1417  density_y[y].direction[i].red*MagickLog10(density_x[x].direction[i].red*
1418  density_y[y].direction[i].red));
1419  entropy_xy2.direction[i].green-=(density_x[x].direction[i].green*
1420  density_y[y].direction[i].green*MagickLog10(density_x[x].direction[i].green*
1421  density_y[y].direction[i].green));
1422  entropy_xy2.direction[i].blue-=(density_x[x].direction[i].blue*
1423  density_y[y].direction[i].blue*MagickLog10(density_x[x].direction[i].blue*
1424  density_y[y].direction[i].blue));
1425  if (image->colorspace == CMYKColorspace)
1426  entropy_xy2.direction[i].black-=(density_x[x].direction[i].black*
1427  density_y[y].direction[i].black*MagickLog10(
1428  density_x[x].direction[i].black*density_y[y].direction[i].black));
1429  if (image->alpha_trait != UndefinedPixelTrait)
1430  entropy_xy2.direction[i].alpha-=(density_x[x].direction[i].alpha*
1431  density_y[y].direction[i].alpha*MagickLog10(
1432  density_x[x].direction[i].alpha*density_y[y].direction[i].alpha));
1433  }
1434  }
1435  channel_features[RedPixelChannel].variance_sum_of_squares[i]=
1436  variance.direction[i].red;
1437  channel_features[GreenPixelChannel].variance_sum_of_squares[i]=
1438  variance.direction[i].green;
1439  channel_features[BluePixelChannel].variance_sum_of_squares[i]=
1440  variance.direction[i].blue;
1441  if (image->colorspace == CMYKColorspace)
1442  channel_features[BlackPixelChannel].variance_sum_of_squares[i]=
1443  variance.direction[i].black;
1444  if (image->alpha_trait != UndefinedPixelTrait)
1445  channel_features[AlphaPixelChannel].variance_sum_of_squares[i]=
1446  variance.direction[i].alpha;
1447  }
1448  /*
1449  Compute more texture features.
1450  */
1451  (void) memset(&variance,0,sizeof(variance));
1452  (void) memset(&sum_squares,0,sizeof(sum_squares));
1453 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1454  #pragma omp parallel for schedule(static) shared(status) \
1455  magick_number_threads(image,image,number_grays,1)
1456 #endif
1457  for (i=0; i < 4; i++)
1458  {
1459  register ssize_t
1460  x;
1461 
1462  for (x=0; x < (ssize_t) number_grays; x++)
1463  {
1464  /*
1465  Difference variance.
1466  */
1467  variance.direction[i].red+=density_xy[x].direction[i].red;
1468  variance.direction[i].green+=density_xy[x].direction[i].green;
1469  variance.direction[i].blue+=density_xy[x].direction[i].blue;
1470  if (image->colorspace == CMYKColorspace)
1471  variance.direction[i].black+=density_xy[x].direction[i].black;
1472  if (image->alpha_trait != UndefinedPixelTrait)
1473  variance.direction[i].alpha+=density_xy[x].direction[i].alpha;
1474  sum_squares.direction[i].red+=density_xy[x].direction[i].red*
1475  density_xy[x].direction[i].red;
1476  sum_squares.direction[i].green+=density_xy[x].direction[i].green*
1477  density_xy[x].direction[i].green;
1478  sum_squares.direction[i].blue+=density_xy[x].direction[i].blue*
1479  density_xy[x].direction[i].blue;
1480  if (image->colorspace == CMYKColorspace)
1481  sum_squares.direction[i].black+=density_xy[x].direction[i].black*
1482  density_xy[x].direction[i].black;
1483  if (image->alpha_trait != UndefinedPixelTrait)
1484  sum_squares.direction[i].alpha+=density_xy[x].direction[i].alpha*
1485  density_xy[x].direction[i].alpha;
1486  /*
1487  Difference entropy.
1488  */
1489  channel_features[RedPixelChannel].difference_entropy[i]-=
1490  density_xy[x].direction[i].red*
1491  MagickLog10(density_xy[x].direction[i].red);
1492  channel_features[GreenPixelChannel].difference_entropy[i]-=
1493  density_xy[x].direction[i].green*
1494  MagickLog10(density_xy[x].direction[i].green);
1495  channel_features[BluePixelChannel].difference_entropy[i]-=
1496  density_xy[x].direction[i].blue*
1497  MagickLog10(density_xy[x].direction[i].blue);
1498  if (image->colorspace == CMYKColorspace)
1499  channel_features[BlackPixelChannel].difference_entropy[i]-=
1500  density_xy[x].direction[i].black*
1501  MagickLog10(density_xy[x].direction[i].black);
1502  if (image->alpha_trait != UndefinedPixelTrait)
1503  channel_features[AlphaPixelChannel].difference_entropy[i]-=
1504  density_xy[x].direction[i].alpha*
1505  MagickLog10(density_xy[x].direction[i].alpha);
1506  /*
1507  Information Measures of Correlation.
1508  */
1509  entropy_x.direction[i].red-=(density_x[x].direction[i].red*
1510  MagickLog10(density_x[x].direction[i].red));
1511  entropy_x.direction[i].green-=(density_x[x].direction[i].green*
1512  MagickLog10(density_x[x].direction[i].green));
1513  entropy_x.direction[i].blue-=(density_x[x].direction[i].blue*
1514  MagickLog10(density_x[x].direction[i].blue));
1515  if (image->colorspace == CMYKColorspace)
1516  entropy_x.direction[i].black-=(density_x[x].direction[i].black*
1517  MagickLog10(density_x[x].direction[i].black));
1518  if (image->alpha_trait != UndefinedPixelTrait)
1519  entropy_x.direction[i].alpha-=(density_x[x].direction[i].alpha*
1520  MagickLog10(density_x[x].direction[i].alpha));
1521  entropy_y.direction[i].red-=(density_y[x].direction[i].red*
1522  MagickLog10(density_y[x].direction[i].red));
1523  entropy_y.direction[i].green-=(density_y[x].direction[i].green*
1524  MagickLog10(density_y[x].direction[i].green));
1525  entropy_y.direction[i].blue-=(density_y[x].direction[i].blue*
1526  MagickLog10(density_y[x].direction[i].blue));
1527  if (image->colorspace == CMYKColorspace)
1528  entropy_y.direction[i].black-=(density_y[x].direction[i].black*
1529  MagickLog10(density_y[x].direction[i].black));
1530  if (image->alpha_trait != UndefinedPixelTrait)
1531  entropy_y.direction[i].alpha-=(density_y[x].direction[i].alpha*
1532  MagickLog10(density_y[x].direction[i].alpha));
1533  }
1534  /*
1535  Difference variance.
1536  */
1537  channel_features[RedPixelChannel].difference_variance[i]=
1538  (((double) number_grays*number_grays*sum_squares.direction[i].red)-
1539  (variance.direction[i].red*variance.direction[i].red))/
1540  ((double) number_grays*number_grays*number_grays*number_grays);
1541  channel_features[GreenPixelChannel].difference_variance[i]=
1542  (((double) number_grays*number_grays*sum_squares.direction[i].green)-
1543  (variance.direction[i].green*variance.direction[i].green))/
1544  ((double) number_grays*number_grays*number_grays*number_grays);
1545  channel_features[BluePixelChannel].difference_variance[i]=
1546  (((double) number_grays*number_grays*sum_squares.direction[i].blue)-
1547  (variance.direction[i].blue*variance.direction[i].blue))/
1548  ((double) number_grays*number_grays*number_grays*number_grays);
1549  if (image->colorspace == CMYKColorspace)
1550  channel_features[BlackPixelChannel].difference_variance[i]=
1551  (((double) number_grays*number_grays*sum_squares.direction[i].black)-
1552  (variance.direction[i].black*variance.direction[i].black))/
1553  ((double) number_grays*number_grays*number_grays*number_grays);
1554  if (image->alpha_trait != UndefinedPixelTrait)
1555  channel_features[AlphaPixelChannel].difference_variance[i]=
1556  (((double) number_grays*number_grays*sum_squares.direction[i].alpha)-
1557  (variance.direction[i].alpha*variance.direction[i].alpha))/
1558  ((double) number_grays*number_grays*number_grays*number_grays);
1559  /*
1560  Information Measures of Correlation.
1561  */
1562  channel_features[RedPixelChannel].measure_of_correlation_1[i]=
1563  (entropy_xy.direction[i].red-entropy_xy1.direction[i].red)/
1564  (entropy_x.direction[i].red > entropy_y.direction[i].red ?
1565  entropy_x.direction[i].red : entropy_y.direction[i].red);
1566  channel_features[GreenPixelChannel].measure_of_correlation_1[i]=
1567  (entropy_xy.direction[i].green-entropy_xy1.direction[i].green)/
1568  (entropy_x.direction[i].green > entropy_y.direction[i].green ?
1569  entropy_x.direction[i].green : entropy_y.direction[i].green);
1570  channel_features[BluePixelChannel].measure_of_correlation_1[i]=
1571  (entropy_xy.direction[i].blue-entropy_xy1.direction[i].blue)/
1572  (entropy_x.direction[i].blue > entropy_y.direction[i].blue ?
1573  entropy_x.direction[i].blue : entropy_y.direction[i].blue);
1574  if (image->colorspace == CMYKColorspace)
1575  channel_features[BlackPixelChannel].measure_of_correlation_1[i]=
1576  (entropy_xy.direction[i].black-entropy_xy1.direction[i].black)/
1577  (entropy_x.direction[i].black > entropy_y.direction[i].black ?
1578  entropy_x.direction[i].black : entropy_y.direction[i].black);
1579  if (image->alpha_trait != UndefinedPixelTrait)
1580  channel_features[AlphaPixelChannel].measure_of_correlation_1[i]=
1581  (entropy_xy.direction[i].alpha-entropy_xy1.direction[i].alpha)/
1582  (entropy_x.direction[i].alpha > entropy_y.direction[i].alpha ?
1583  entropy_x.direction[i].alpha : entropy_y.direction[i].alpha);
1584  channel_features[RedPixelChannel].measure_of_correlation_2[i]=
1585  (sqrt(fabs(1.0-exp(-2.0*(double) (entropy_xy2.direction[i].red-
1586  entropy_xy.direction[i].red)))));
1587  channel_features[GreenPixelChannel].measure_of_correlation_2[i]=
1588  (sqrt(fabs(1.0-exp(-2.0*(double) (entropy_xy2.direction[i].green-
1589  entropy_xy.direction[i].green)))));
1590  channel_features[BluePixelChannel].measure_of_correlation_2[i]=
1591  (sqrt(fabs(1.0-exp(-2.0*(double) (entropy_xy2.direction[i].blue-
1592  entropy_xy.direction[i].blue)))));
1593  if (image->colorspace == CMYKColorspace)
1594  channel_features[BlackPixelChannel].measure_of_correlation_2[i]=
1595  (sqrt(fabs(1.0-exp(-2.0*(double) (entropy_xy2.direction[i].black-
1596  entropy_xy.direction[i].black)))));
1597  if (image->alpha_trait != UndefinedPixelTrait)
1598  channel_features[AlphaPixelChannel].measure_of_correlation_2[i]=
1599  (sqrt(fabs(1.0-exp(-2.0*(double) (entropy_xy2.direction[i].alpha-
1600  entropy_xy.direction[i].alpha)))));
1601  }
1602  /*
1603  Compute more texture features.
1604  */
1605 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1606  #pragma omp parallel for schedule(static) shared(status) \
1607  magick_number_threads(image,image,number_grays,1)
1608 #endif
1609  for (i=0; i < 4; i++)
1610  {
1611  ssize_t
1612  z;
1613 
1614  for (z=0; z < (ssize_t) number_grays; z++)
1615  {
1616  register ssize_t
1617  y;
1618 
1620  pixel;
1621 
1622  (void) memset(&pixel,0,sizeof(pixel));
1623  for (y=0; y < (ssize_t) number_grays; y++)
1624  {
1625  register ssize_t
1626  x;
1627 
1628  for (x=0; x < (ssize_t) number_grays; x++)
1629  {
1630  /*
1631  Contrast: amount of local variations present in an image.
1632  */
1633  if (((y-x) == z) || ((x-y) == z))
1634  {
1635  pixel.direction[i].red+=cooccurrence[x][y].direction[i].red;
1636  pixel.direction[i].green+=cooccurrence[x][y].direction[i].green;
1637  pixel.direction[i].blue+=cooccurrence[x][y].direction[i].blue;
1638  if (image->colorspace == CMYKColorspace)
1639  pixel.direction[i].black+=cooccurrence[x][y].direction[i].black;
1640  if (image->alpha_trait != UndefinedPixelTrait)
1641  pixel.direction[i].alpha+=
1642  cooccurrence[x][y].direction[i].alpha;
1643  }
1644  /*
1645  Maximum Correlation Coefficient.
1646  */
1647  if ((fabs(density_x[z].direction[i].red) > MagickEpsilon) &&
1648  (fabs(density_y[x].direction[i].red) > MagickEpsilon))
1649  Q[z][y].direction[i].red+=cooccurrence[z][x].direction[i].red*
1650  cooccurrence[y][x].direction[i].red/density_x[z].direction[i].red/
1651  density_y[x].direction[i].red;
1652  if ((fabs(density_x[z].direction[i].green) > MagickEpsilon) &&
1653  (fabs(density_y[x].direction[i].red) > MagickEpsilon))
1654  Q[z][y].direction[i].green+=cooccurrence[z][x].direction[i].green*
1655  cooccurrence[y][x].direction[i].green/
1656  density_x[z].direction[i].green/density_y[x].direction[i].red;
1657  if ((fabs(density_x[z].direction[i].blue) > MagickEpsilon) &&
1658  (fabs(density_y[x].direction[i].blue) > MagickEpsilon))
1659  Q[z][y].direction[i].blue+=cooccurrence[z][x].direction[i].blue*
1660  cooccurrence[y][x].direction[i].blue/
1661  density_x[z].direction[i].blue/density_y[x].direction[i].blue;
1662  if (image->colorspace == CMYKColorspace)
1663  if ((fabs(density_x[z].direction[i].black) > MagickEpsilon) &&
1664  (fabs(density_y[x].direction[i].black) > MagickEpsilon))
1665  Q[z][y].direction[i].black+=cooccurrence[z][x].direction[i].black*
1666  cooccurrence[y][x].direction[i].black/
1667  density_x[z].direction[i].black/density_y[x].direction[i].black;
1668  if (image->alpha_trait != UndefinedPixelTrait)
1669  if ((fabs(density_x[z].direction[i].alpha) > MagickEpsilon) &&
1670  (fabs(density_y[x].direction[i].alpha) > MagickEpsilon))
1671  Q[z][y].direction[i].alpha+=
1672  cooccurrence[z][x].direction[i].alpha*
1673  cooccurrence[y][x].direction[i].alpha/
1674  density_x[z].direction[i].alpha/
1675  density_y[x].direction[i].alpha;
1676  }
1677  }
1678  channel_features[RedPixelChannel].contrast[i]+=z*z*
1679  pixel.direction[i].red;
1680  channel_features[GreenPixelChannel].contrast[i]+=z*z*
1681  pixel.direction[i].green;
1682  channel_features[BluePixelChannel].contrast[i]+=z*z*
1683  pixel.direction[i].blue;
1684  if (image->colorspace == CMYKColorspace)
1685  channel_features[BlackPixelChannel].contrast[i]+=z*z*
1686  pixel.direction[i].black;
1687  if (image->alpha_trait != UndefinedPixelTrait)
1688  channel_features[AlphaPixelChannel].contrast[i]+=z*z*
1689  pixel.direction[i].alpha;
1690  }
1691  /*
1692  Maximum Correlation Coefficient.
1693  Future: return second largest eigenvalue of Q.
1694  */
1695  channel_features[RedPixelChannel].maximum_correlation_coefficient[i]=
1696  sqrt((double) -1.0);
1698  sqrt((double) -1.0);
1700  sqrt((double) -1.0);
1701  if (image->colorspace == CMYKColorspace)
1703  sqrt((double) -1.0);
1704  if (image->alpha_trait != UndefinedPixelTrait)
1706  sqrt((double) -1.0);
1707  }
1708  /*
1709  Relinquish resources.
1710  */
1712  for (i=0; i < (ssize_t) number_grays; i++)
1715  density_y=(ChannelStatistics *) RelinquishMagickMemory(density_y);
1716  density_xy=(ChannelStatistics *) RelinquishMagickMemory(density_xy);
1717  density_x=(ChannelStatistics *) RelinquishMagickMemory(density_x);
1718  for (i=0; i < (ssize_t) number_grays; i++)
1719  cooccurrence[i]=(ChannelStatistics *)
1720  RelinquishMagickMemory(cooccurrence[i]);
1721  cooccurrence=(ChannelStatistics **) RelinquishMagickMemory(cooccurrence);
1722  return(channel_features);
1723 }
1724 
1725 /*
1726 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1727 % %
1728 % %
1729 % %
1730 % H o u g h L i n e I m a g e %
1731 % %
1732 % %
1733 % %
1734 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1735 %
1736 % Use HoughLineImage() in conjunction with any binary edge extracted image (we
1737 % recommand Canny) to identify lines in the image. The algorithm accumulates
1738 % counts for every white pixel for every possible orientation (for angles from
1739 % 0 to 179 in 1 degree increments) and distance from the center of the image to
1740 % the corner (in 1 px increments) and stores the counts in an accumulator
1741 % matrix of angle vs distance. The size of the accumulator is 180x(diagonal/2).
1742 % Next it searches this space for peaks in counts and converts the locations
1743 % of the peaks to slope and intercept in the normal x,y input image space. Use
1744 % the slope/intercepts to find the endpoints clipped to the bounds of the
1745 % image. The lines are then drawn. The counts are a measure of the length of
1746 % the lines.
1747 %
1748 % The format of the HoughLineImage method is:
1749 %
1750 % Image *HoughLineImage(const Image *image,const size_t width,
1751 % const size_t height,const size_t threshold,ExceptionInfo *exception)
1752 %
1753 % A description of each parameter follows:
1754 %
1755 % o image: the image.
1756 %
1757 % o width, height: find line pairs as local maxima in this neighborhood.
1758 %
1759 % o threshold: the line count threshold.
1760 %
1761 % o exception: return any errors or warnings in this structure.
1762 %
1763 */
1764 
1765 static inline double MagickRound(double x)
1766 {
1767  /*
1768  Round the fraction to nearest integer.
1769  */
1770  if ((x-floor(x)) < (ceil(x)-x))
1771  return(floor(x));
1772  return(ceil(x));
1773 }
1774 
1775 static Image *RenderHoughLines(const ImageInfo *image_info,const size_t columns,
1776  const size_t rows,ExceptionInfo *exception)
1777 {
1778 #define BoundingBox "viewbox"
1779 
1780  DrawInfo
1781  *draw_info;
1782 
1783  Image
1784  *image;
1785 
1787  status;
1788 
1789  /*
1790  Open image.
1791  */
1792  image=AcquireImage(image_info,exception);
1793  status=OpenBlob(image_info,image,ReadBinaryBlobMode,exception);
1794  if (status == MagickFalse)
1795  {
1796  image=DestroyImageList(image);
1797  return((Image *) NULL);
1798  }
1799  image->columns=columns;
1800  image->rows=rows;
1801  draw_info=CloneDrawInfo(image_info,(DrawInfo *) NULL);
1802  draw_info->affine.sx=image->resolution.x == 0.0 ? 1.0 : image->resolution.x/
1804  draw_info->affine.sy=image->resolution.y == 0.0 ? 1.0 : image->resolution.y/
1806  image->columns=(size_t) (draw_info->affine.sx*image->columns);
1807  image->rows=(size_t) (draw_info->affine.sy*image->rows);
1808  status=SetImageExtent(image,image->columns,image->rows,exception);
1809  if (status == MagickFalse)
1810  return(DestroyImageList(image));
1811  if (SetImageBackgroundColor(image,exception) == MagickFalse)
1812  {
1813  image=DestroyImageList(image);
1814  return((Image *) NULL);
1815  }
1816  /*
1817  Render drawing.
1818  */
1819  if (GetBlobStreamData(image) == (unsigned char *) NULL)
1820  draw_info->primitive=FileToString(image->filename,~0UL,exception);
1821  else
1822  {
1823  draw_info->primitive=(char *) AcquireMagickMemory((size_t)
1824  GetBlobSize(image)+1);
1825  if (draw_info->primitive != (char *) NULL)
1826  {
1827  (void) memcpy(draw_info->primitive,GetBlobStreamData(image),
1828  (size_t) GetBlobSize(image));
1829  draw_info->primitive[GetBlobSize(image)]='\0';
1830  }
1831  }
1832  (void) DrawImage(image,draw_info,exception);
1833  draw_info=DestroyDrawInfo(draw_info);
1834  (void) CloseBlob(image);
1835  return(GetFirstImageInList(image));
1836 }
1837 
1838 MagickExport Image *HoughLineImage(const Image *image,const size_t width,
1839  const size_t height,const size_t threshold,ExceptionInfo *exception)
1840 {
1841 #define HoughLineImageTag "HoughLine/Image"
1842 
1843  CacheView
1844  *image_view;
1845 
1846  char
1847  message[MagickPathExtent],
1848  path[MagickPathExtent];
1849 
1850  const char
1851  *artifact;
1852 
1853  double
1854  hough_height;
1855 
1856  Image
1857  *lines_image = NULL;
1858 
1859  ImageInfo
1860  *image_info;
1861 
1862  int
1863  file;
1864 
1866  status;
1867 
1869  progress;
1870 
1871  MatrixInfo
1872  *accumulator;
1873 
1874  PointInfo
1875  center;
1876 
1877  register ssize_t
1878  y;
1879 
1880  size_t
1881  accumulator_height,
1882  accumulator_width,
1883  line_count;
1884 
1885  /*
1886  Create the accumulator.
1887  */
1888  assert(image != (const Image *) NULL);
1889  assert(image->signature == MagickCoreSignature);
1890  if (image->debug != MagickFalse)
1891  (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
1892  assert(exception != (ExceptionInfo *) NULL);
1893  assert(exception->signature == MagickCoreSignature);
1894  accumulator_width=180;
1895  hough_height=((sqrt(2.0)*(double) (image->rows > image->columns ?
1896  image->rows : image->columns))/2.0);
1897  accumulator_height=(size_t) (2.0*hough_height);
1898  accumulator=AcquireMatrixInfo(accumulator_width,accumulator_height,
1899  sizeof(double),exception);
1900  if (accumulator == (MatrixInfo *) NULL)
1901  ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
1902  if (NullMatrix(accumulator) == MagickFalse)
1903  {
1904  accumulator=DestroyMatrixInfo(accumulator);
1905  ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
1906  }
1907  /*
1908  Populate the accumulator.
1909  */
1910  status=MagickTrue;
1911  progress=0;
1912  center.x=(double) image->columns/2.0;
1913  center.y=(double) image->rows/2.0;
1914  image_view=AcquireVirtualCacheView(image,exception);
1915  for (y=0; y < (ssize_t) image->rows; y++)
1916  {
1917  register const Quantum
1918  *magick_restrict p;
1919 
1920  register ssize_t
1921  x;
1922 
1923  if (status == MagickFalse)
1924  continue;
1925  p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
1926  if (p == (Quantum *) NULL)
1927  {
1928  status=MagickFalse;
1929  continue;
1930  }
1931  for (x=0; x < (ssize_t) image->columns; x++)
1932  {
1933  if (GetPixelIntensity(image,p) > (QuantumRange/2.0))
1934  {
1935  register ssize_t
1936  i;
1937 
1938  for (i=0; i < 180; i++)
1939  {
1940  double
1941  count,
1942  radius;
1943 
1944  radius=(((double) x-center.x)*cos(DegreesToRadians((double) i)))+
1945  (((double) y-center.y)*sin(DegreesToRadians((double) i)));
1946  (void) GetMatrixElement(accumulator,i,(ssize_t)
1947  MagickRound(radius+hough_height),&count);
1948  count++;
1949  (void) SetMatrixElement(accumulator,i,(ssize_t)
1950  MagickRound(radius+hough_height),&count);
1951  }
1952  }
1953  p+=GetPixelChannels(image);
1954  }
1955  if (image->progress_monitor != (MagickProgressMonitor) NULL)
1956  {
1958  proceed;
1959 
1960 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1961  #pragma omp atomic
1962 #endif
1963  progress++;
1964  proceed=SetImageProgress(image,CannyEdgeImageTag,progress,image->rows);
1965  if (proceed == MagickFalse)
1966  status=MagickFalse;
1967  }
1968  }
1969  image_view=DestroyCacheView(image_view);
1970  if (status == MagickFalse)
1971  {
1972  accumulator=DestroyMatrixInfo(accumulator);
1973  return((Image *) NULL);
1974  }
1975  /*
1976  Generate line segments from accumulator.
1977  */
1978  file=AcquireUniqueFileResource(path);
1979  if (file == -1)
1980  {
1981  accumulator=DestroyMatrixInfo(accumulator);
1982  return((Image *) NULL);
1983  }
1984  (void) FormatLocaleString(message,MagickPathExtent,
1985  "# Hough line transform: %.20gx%.20g%+.20g\n",(double) width,
1986  (double) height,(double) threshold);
1987  if (write(file,message,strlen(message)) != (ssize_t) strlen(message))
1988  status=MagickFalse;
1989  (void) FormatLocaleString(message,MagickPathExtent,
1990  "viewbox 0 0 %.20g %.20g\n",(double) image->columns,(double) image->rows);
1991  if (write(file,message,strlen(message)) != (ssize_t) strlen(message))
1992  status=MagickFalse;
1993  (void) FormatLocaleString(message,MagickPathExtent,
1994  "# x1,y1 x2,y2 # count angle distance\n");
1995  if (write(file,message,strlen(message)) != (ssize_t) strlen(message))
1996  status=MagickFalse;
1997  line_count=image->columns > image->rows ? image->columns/4 : image->rows/4;
1998  if (threshold != 0)
1999  line_count=threshold;
2000  for (y=0; y < (ssize_t) accumulator_height; y++)
2001  {
2002  register ssize_t
2003  x;
2004 
2005  for (x=0; x < (ssize_t) accumulator_width; x++)
2006  {
2007  double
2008  count;
2009 
2010  (void) GetMatrixElement(accumulator,x,y,&count);
2011  if (count >= (double) line_count)
2012  {
2013  double
2014  maxima;
2015 
2016  SegmentInfo
2017  line;
2018 
2019  ssize_t
2020  v;
2021 
2022  /*
2023  Is point a local maxima?
2024  */
2025  maxima=count;
2026  for (v=(-((ssize_t) height/2)); v <= (((ssize_t) height/2)); v++)
2027  {
2028  ssize_t
2029  u;
2030 
2031  for (u=(-((ssize_t) width/2)); u <= (((ssize_t) width/2)); u++)
2032  {
2033  if ((u != 0) || (v !=0))
2034  {
2035  (void) GetMatrixElement(accumulator,x+u,y+v,&count);
2036  if (count > maxima)
2037  {
2038  maxima=count;
2039  break;
2040  }
2041  }
2042  }
2043  if (u < (ssize_t) (width/2))
2044  break;
2045  }
2046  (void) GetMatrixElement(accumulator,x,y,&count);
2047  if (maxima > count)
2048  continue;
2049  if ((x >= 45) && (x <= 135))
2050  {
2051  /*
2052  y = (r-x cos(t))/sin(t)
2053  */
2054  line.x1=0.0;
2055  line.y1=((double) (y-(accumulator_height/2.0))-((line.x1-
2056  (image->columns/2.0))*cos(DegreesToRadians((double) x))))/
2057  sin(DegreesToRadians((double) x))+(image->rows/2.0);
2058  line.x2=(double) image->columns;
2059  line.y2=((double) (y-(accumulator_height/2.0))-((line.x2-
2060  (image->columns/2.0))*cos(DegreesToRadians((double) x))))/
2061  sin(DegreesToRadians((double) x))+(image->rows/2.0);
2062  }
2063  else
2064  {
2065  /*
2066  x = (r-y cos(t))/sin(t)
2067  */
2068  line.y1=0.0;
2069  line.x1=((double) (y-(accumulator_height/2.0))-((line.y1-
2070  (image->rows/2.0))*sin(DegreesToRadians((double) x))))/
2071  cos(DegreesToRadians((double) x))+(image->columns/2.0);
2072  line.y2=(double) image->rows;
2073  line.x2=((double) (y-(accumulator_height/2.0))-((line.y2-
2074  (image->rows/2.0))*sin(DegreesToRadians((double) x))))/
2075  cos(DegreesToRadians((double) x))+(image->columns/2.0);
2076  }
2077  (void) FormatLocaleString(message,MagickPathExtent,
2078  "line %g,%g %g,%g # %g %g %g\n",line.x1,line.y1,line.x2,line.y2,
2079  maxima,(double) x,(double) y);
2080  if (write(file,message,strlen(message)) != (ssize_t) strlen(message))
2081  status=MagickFalse;
2082  }
2083  }
2084  }
2085  (void) close(file);
2086  /*
2087  Render lines to image canvas.
2088  */
2089  image_info=AcquireImageInfo();
2090  image_info->background_color=image->background_color;
2091  (void) FormatLocaleString(image_info->filename,MagickPathExtent,"%s",path);
2092  artifact=GetImageArtifact(image,"background");
2093  if (artifact != (const char *) NULL)
2094  (void) SetImageOption(image_info,"background",artifact);
2095  artifact=GetImageArtifact(image,"fill");
2096  if (artifact != (const char *) NULL)
2097  (void) SetImageOption(image_info,"fill",artifact);
2098  artifact=GetImageArtifact(image,"stroke");
2099  if (artifact != (const char *) NULL)
2100  (void) SetImageOption(image_info,"stroke",artifact);
2101  artifact=GetImageArtifact(image,"strokewidth");
2102  if (artifact != (const char *) NULL)
2103  (void) SetImageOption(image_info,"strokewidth",artifact);
2104  lines_image=RenderHoughLines(image_info,image->columns,image->rows,exception);
2105  artifact=GetImageArtifact(image,"hough-lines:accumulator");
2106  if ((lines_image != (Image *) NULL) &&
2107  (IsStringTrue(artifact) != MagickFalse))
2108  {
2109  Image
2110  *accumulator_image;
2111 
2112  accumulator_image=MatrixToImage(accumulator,exception);
2113  if (accumulator_image != (Image *) NULL)
2114  AppendImageToList(&lines_image,accumulator_image);
2115  }
2116  /*
2117  Free resources.
2118  */
2119  accumulator=DestroyMatrixInfo(accumulator);
2120  image_info=DestroyImageInfo(image_info);
2121  (void) RelinquishUniqueFileResource(path);
2122  return(GetFirstImageInList(lines_image));
2123 }
2124 
2125 /*
2126 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2127 % %
2128 % %
2129 % %
2130 % M e a n S h i f t I m a g e %
2131 % %
2132 % %
2133 % %
2134 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2135 %
2136 % MeanShiftImage() delineate arbitrarily shaped clusters in the image. For
2137 % each pixel, it visits all the pixels in the neighborhood specified by
2138 % the window centered at the pixel and excludes those that are outside the
2139 % radius=(window-1)/2 surrounding the pixel. From those pixels, it finds those
2140 % that are within the specified color distance from the current mean, and
2141 % computes a new x,y centroid from those coordinates and a new mean. This new
2142 % x,y centroid is used as the center for a new window. This process iterates
2143 % until it converges and the final mean is replaces the (original window
2144 % center) pixel value. It repeats this process for the next pixel, etc.,
2145 % until it processes all pixels in the image. Results are typically better with
2146 % colorspaces other than sRGB. We recommend YIQ, YUV or YCbCr.
2147 %
2148 % The format of the MeanShiftImage method is:
2149 %
2150 % Image *MeanShiftImage(const Image *image,const size_t width,
2151 % const size_t height,const double color_distance,
2152 % ExceptionInfo *exception)
2153 %
2154 % A description of each parameter follows:
2155 %
2156 % o image: the image.
2157 %
2158 % o width, height: find pixels in this neighborhood.
2159 %
2160 % o color_distance: the color distance.
2161 %
2162 % o exception: return any errors or warnings in this structure.
2163 %
2164 */
2165 MagickExport Image *MeanShiftImage(const Image *image,const size_t width,
2166  const size_t height,const double color_distance,ExceptionInfo *exception)
2167 {
2168 #define MaxMeanShiftIterations 100
2169 #define MeanShiftImageTag "MeanShift/Image"
2170 
2171  CacheView
2172  *image_view,
2173  *mean_view,
2174  *pixel_view;
2175 
2176  Image
2177  *mean_image;
2178 
2180  status;
2181 
2183  progress;
2184 
2185  ssize_t
2186  y;
2187 
2188  assert(image != (const Image *) NULL);
2189  assert(image->signature == MagickCoreSignature);
2190  if (image->debug != MagickFalse)
2191  (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
2192  assert(exception != (ExceptionInfo *) NULL);
2193  assert(exception->signature == MagickCoreSignature);
2194  mean_image=CloneImage(image,0,0,MagickTrue,exception);
2195  if (mean_image == (Image *) NULL)
2196  return((Image *) NULL);
2197  if (SetImageStorageClass(mean_image,DirectClass,exception) == MagickFalse)
2198  {
2199  mean_image=DestroyImage(mean_image);
2200  return((Image *) NULL);
2201  }
2202  status=MagickTrue;
2203  progress=0;
2204  image_view=AcquireVirtualCacheView(image,exception);
2205  pixel_view=AcquireVirtualCacheView(image,exception);
2206  mean_view=AcquireAuthenticCacheView(mean_image,exception);
2207 #if defined(MAGICKCORE_OPENMP_SUPPORT)
2208  #pragma omp parallel for schedule(static) shared(status,progress) \
2209  magick_number_threads(mean_image,mean_image,mean_image->rows,1)
2210 #endif
2211  for (y=0; y < (ssize_t) mean_image->rows; y++)
2212  {
2213  register const Quantum
2214  *magick_restrict p;
2215 
2216  register Quantum
2217  *magick_restrict q;
2218 
2219  register ssize_t
2220  x;
2221 
2222  if (status == MagickFalse)
2223  continue;
2224  p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
2225  q=GetCacheViewAuthenticPixels(mean_view,0,y,mean_image->columns,1,
2226  exception);
2227  if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
2228  {
2229  status=MagickFalse;
2230  continue;
2231  }
2232  for (x=0; x < (ssize_t) mean_image->columns; x++)
2233  {
2234  PixelInfo
2235  mean_pixel,
2236  previous_pixel;
2237 
2238  PointInfo
2239  mean_location,
2240  previous_location;
2241 
2242  register ssize_t
2243  i;
2244 
2245  GetPixelInfo(image,&mean_pixel);
2246  GetPixelInfoPixel(image,p,&mean_pixel);
2247  mean_location.x=(double) x;
2248  mean_location.y=(double) y;
2249  for (i=0; i < MaxMeanShiftIterations; i++)
2250  {
2251  double
2252  distance,
2253  gamma;
2254 
2255  PixelInfo
2256  sum_pixel;
2257 
2258  PointInfo
2259  sum_location;
2260 
2261  ssize_t
2262  count,
2263  v;
2264 
2265  sum_location.x=0.0;
2266  sum_location.y=0.0;
2267  GetPixelInfo(image,&sum_pixel);
2268  previous_location=mean_location;
2269  previous_pixel=mean_pixel;
2270  count=0;
2271  for (v=(-((ssize_t) height/2)); v <= (((ssize_t) height/2)); v++)
2272  {
2273  ssize_t
2274  u;
2275 
2276  for (u=(-((ssize_t) width/2)); u <= (((ssize_t) width/2)); u++)
2277  {
2278  if ((v*v+u*u) <= (ssize_t) ((width/2)*(height/2)))
2279  {
2280  PixelInfo
2281  pixel;
2282 
2283  status=GetOneCacheViewVirtualPixelInfo(pixel_view,(ssize_t)
2284  MagickRound(mean_location.x+u),(ssize_t) MagickRound(
2285  mean_location.y+v),&pixel,exception);
2286  distance=(mean_pixel.red-pixel.red)*(mean_pixel.red-pixel.red)+
2287  (mean_pixel.green-pixel.green)*(mean_pixel.green-pixel.green)+
2288  (mean_pixel.blue-pixel.blue)*(mean_pixel.blue-pixel.blue);
2289  if (distance <= (color_distance*color_distance))
2290  {
2291  sum_location.x+=mean_location.x+u;
2292  sum_location.y+=mean_location.y+v;
2293  sum_pixel.red+=pixel.red;
2294  sum_pixel.green+=pixel.green;
2295  sum_pixel.blue+=pixel.blue;
2296  sum_pixel.alpha+=pixel.alpha;
2297  count++;
2298  }
2299  }
2300  }
2301  }
2302  gamma=PerceptibleReciprocal(count);
2303  mean_location.x=gamma*sum_location.x;
2304  mean_location.y=gamma*sum_location.y;
2305  mean_pixel.red=gamma*sum_pixel.red;
2306  mean_pixel.green=gamma*sum_pixel.green;
2307  mean_pixel.blue=gamma*sum_pixel.blue;
2308  mean_pixel.alpha=gamma*sum_pixel.alpha;
2309  distance=(mean_location.x-previous_location.x)*
2310  (mean_location.x-previous_location.x)+
2311  (mean_location.y-previous_location.y)*
2312  (mean_location.y-previous_location.y)+
2313  255.0*QuantumScale*(mean_pixel.red-previous_pixel.red)*
2314  255.0*QuantumScale*(mean_pixel.red-previous_pixel.red)+
2315  255.0*QuantumScale*(mean_pixel.green-previous_pixel.green)*
2316  255.0*QuantumScale*(mean_pixel.green-previous_pixel.green)+
2317  255.0*QuantumScale*(mean_pixel.blue-previous_pixel.blue)*
2318  255.0*QuantumScale*(mean_pixel.blue-previous_pixel.blue);
2319  if (distance <= 3.0)
2320  break;
2321  }
2322  SetPixelRed(mean_image,ClampToQuantum(mean_pixel.red),q);
2323  SetPixelGreen(mean_image,ClampToQuantum(mean_pixel.green),q);
2324  SetPixelBlue(mean_image,ClampToQuantum(mean_pixel.blue),q);
2325  SetPixelAlpha(mean_image,ClampToQuantum(mean_pixel.alpha),q);
2326  p+=GetPixelChannels(image);
2327  q+=GetPixelChannels(mean_image);
2328  }
2329  if (SyncCacheViewAuthenticPixels(mean_view,exception) == MagickFalse)
2330  status=MagickFalse;
2331  if (image->progress_monitor != (MagickProgressMonitor) NULL)
2332  {
2334  proceed;
2335 
2336 #if defined(MAGICKCORE_OPENMP_SUPPORT)
2337  #pragma omp atomic
2338 #endif
2339  progress++;
2340  proceed=SetImageProgress(image,MeanShiftImageTag,progress,image->rows);
2341  if (proceed == MagickFalse)
2342  status=MagickFalse;
2343  }
2344  }
2345  mean_view=DestroyCacheView(mean_view);
2346  pixel_view=DestroyCacheView(pixel_view);
2347  image_view=DestroyCacheView(image_view);
2348  return(mean_image);
2349 }
size_t rows
Definition: image.h:172
#define magick_restrict
Definition: MagickCore.h:41
static Image * RenderHoughLines(const ImageInfo *image_info, const size_t columns, const size_t rows, ExceptionInfo *exception)
Definition: feature.c:1775
double difference_entropy[4]
Definition: feature.h:31
MagickExport CacheView * DestroyCacheView(CacheView *cache_view)
Definition: cache-view.c:252
#define Log10Epsilon
char * primitive
Definition: draw.h:204
double x2
Definition: image.h:107
static double MagickRound(double x)
Definition: feature.c:1765
MagickExport ImageInfo * AcquireImageInfo(void)
Definition: image.c:323
double sum_entropy[4]
Definition: feature.h:31
MagickProgressMonitor progress_monitor
Definition: image.h:303
static Quantum GetPixelAlpha(const Image *magick_restrict image, const Quantum *magick_restrict pixel)
MagickExport MagickBooleanType TransformImageColorspace(Image *image, const ColorspaceType colorspace, ExceptionInfo *exception)
Definition: colorspace.c:1503
unsigned int green
Definition: pixel.h:201
static Quantum GetPixelRed(const Image *magick_restrict image, const Quantum *magick_restrict pixel)
double intensity
Definition: feature.c:136
int orientation
Definition: feature.c:140
MagickExport KernelInfo * DestroyKernelInfo(KernelInfo *kernel)
Definition: morphology.c:2268
#define ThrowFatalException(severity, tag)
MagickExport MagickBooleanType NullMatrix(MatrixInfo *matrix_info)
Definition: matrix.c:1003
size_t signature
Definition: exception.h:123
MagickExport Image * MorphologyImage(const Image *image, const MorphologyMethod method, const ssize_t iterations, const KernelInfo *kernel, ExceptionInfo *exception)
Definition: morphology.c:4136
MagickExport MagickBooleanType GetOneCacheViewVirtualPixelInfo(const CacheView *cache_view, const ssize_t x, const ssize_t y, PixelInfo *pixel, ExceptionInfo *exception)
Definition: cache-view.c:846
MagickExport const char * GetImageArtifact(const Image *image, const char *artifact)
Definition: artifact.c:273
MagickRealType red
Definition: pixel.h:190
static MagickBooleanType TraceEdges(Image *edge_image, CacheView *edge_view, MatrixInfo *canny_cache, const ssize_t x, const ssize_t y, const double lower_threshold, ExceptionInfo *exception)
Definition: feature.c:157
#define CannyEdgeImageTag
#define MagickAbsoluteValue(x)
Definition: image-private.h:35
MagickExport ssize_t FormatLocaleString(char *magick_restrict string, const size_t length, const char *magick_restrict format,...)
Definition: locale.c:499
ssize_t x
Definition: feature.c:143
unsigned int blue
Definition: pixel.h:201
#define DefaultResolution
Definition: image-private.h:27
MagickExport const Quantum * GetCacheViewVirtualPixels(const CacheView *cache_view, const ssize_t x, const ssize_t y, const size_t columns, const size_t rows, ExceptionInfo *exception)
Definition: cache-view.c:651
static double MagickLog10(const double x)
Definition: feature.c:614
MagickRealType alpha
Definition: pixel.h:190
struct _ChannelStatistics ChannelStatistics
#define MagickEpsilon
Definition: magick-type.h:114
MagickExport MagickBooleanType GetMatrixElement(const MatrixInfo *matrix_info, const ssize_t x, const ssize_t y, void *value)
Definition: matrix.c:705
AffineMatrix affine
Definition: draw.h:211
double contrast[4]
Definition: feature.h:31
Definition: log.h:52
MagickExport char * FileToString(const char *filename, const size_t extent, ExceptionInfo *exception)
Definition: string.c:990
ssize_t MagickOffsetType
Definition: magick-type.h:133
static Quantum ClampToQuantum(const MagickRealType quantum)
Definition: quantum.h:85
MagickExport void GetPixelInfo(const Image *image, PixelInfo *pixel)
Definition: pixel.c:2170
MagickExport MagickBooleanType SetImageOption(ImageInfo *image_info, const char *option, const char *value)
Definition: option.c:3255
double correlation[4]
Definition: feature.h:31
Definition: image.h:151
double sum_variance[4]
Definition: feature.h:31
MagickExport MagickBooleanType SetMatrixElement(const MatrixInfo *matrix_info, const ssize_t x, const ssize_t y, const void *value)
Definition: matrix.c:1110
double x
Definition: geometry.h:123
MagickExport KernelInfo * AcquireKernelInfo(const char *kernel_string, ExceptionInfo *exception)
Definition: morphology.c:486
#define MagickCoreSignature
MagickExport Quantum * GetCacheViewAuthenticPixels(CacheView *cache_view, const ssize_t x, const ssize_t y, const size_t columns, const size_t rows, ExceptionInfo *exception)
Definition: cache-view.c:299
MagickExport Image * GetFirstImageInList(const Image *images)
Definition: list.c:574
MagickExport MagickBooleanType SetImageAlphaChannel(Image *image, const AlphaChannelOption alpha_type, ExceptionInfo *exception)
Definition: channel.c:974
MagickBooleanType
Definition: magick-type.h:169
static double PerceptibleReciprocal(const double x)
MagickExport int AcquireUniqueFileResource(char *path)
Definition: resource.c:551
unsigned int black
Definition: pixel.h:201
double measure_of_correlation_1[4]
Definition: feature.h:31
double x1
Definition: image.h:107
MagickExport Image * MeanShiftImage(const Image *image, const size_t width, const size_t height, const double color_distance, ExceptionInfo *exception)
Definition: feature.c:2165
MagickExport void * AcquireQuantumMemory(const size_t count, const size_t quantum)
Definition: memory.c:634
char filename[MagickPathExtent]
Definition: image.h:480
static double DegreesToRadians(const double degrees)
Definition: image-private.h:53
double y
Definition: geometry.h:123
MagickExport MagickBooleanType RelinquishUniqueFileResource(const char *path)
Definition: resource.c:1098
MagickExport MagickBooleanType CloseBlob(Image *)
#define MagickPathExtent
MagickExport Image * MatrixToImage(const MatrixInfo *matrix_info, ExceptionInfo *exception)
Definition: matrix.c:872
static Quantum GetPixelGreen(const Image *magick_restrict image, const Quantum *magick_restrict pixel)
MagickExport MagickBooleanType IsStringTrue(const char *value)
Definition: string.c:1415
static void GetPixelInfoPixel(const Image *magick_restrict image, const Quantum *magick_restrict pixel, PixelInfo *magick_restrict pixel_info)
MagickExport MagickBooleanType DrawImage(Image *image, const DrawInfo *draw_info, ExceptionInfo *exception)
Definition: draw.c:4471
PixelTrait alpha_trait
Definition: image.h:280
MagickRealType blue
Definition: pixel.h:190
MagickExport Image * HoughLineImage(const Image *image, const size_t width, const size_t height, const size_t threshold, ExceptionInfo *exception)
Definition: feature.c:1838
static Quantum GetPixelBlack(const Image *magick_restrict image, const Quantum *magick_restrict pixel)
#define MaxMeanShiftIterations
double entropy[4]
Definition: feature.h:31
double sx
Definition: geometry.h:95
MagickExport MatrixInfo * AcquireMatrixInfo(const size_t columns, const size_t rows, const size_t stride, ExceptionInfo *exception)
Definition: matrix.c:200
double y2
Definition: image.h:107
MagickExport MagickBooleanType ThrowMagickException(ExceptionInfo *exception, const char *module, const char *function, const size_t line, const ExceptionType severity, const char *tag, const char *format,...)
Definition: exception.c:1145
MagickExport MagickBooleanType LogMagickEvent(const LogEventType type, const char *module, const char *function, const size_t line, const char *format,...)
Definition: log.c:1660
MagickExport MagickBooleanType SetImageBackgroundColor(Image *image, ExceptionInfo *exception)
Definition: image.c:2395
size_t signature
Definition: image.h:354
#define QuantumScale
Definition: magick-type.h:119
size_t columns
Definition: image.h:172
MagickExport Image * AcquireImage(const ImageInfo *image_info, ExceptionInfo *exception)
Definition: image.c:134
double sum_average[4]
Definition: feature.h:31
MagickExport MagickBooleanType OpenBlob(const ImageInfo *, Image *, const BlobMode, ExceptionInfo *)
unsigned int alpha
Definition: pixel.h:201
MagickExport DrawInfo * CloneDrawInfo(const ImageInfo *image_info, const DrawInfo *draw_info)
Definition: draw.c:269
#define MeanShiftImageTag
static void SetPixelBlue(const Image *magick_restrict image, const Quantum blue, Quantum *magick_restrict pixel)
MagickExport MagickBooleanType SetImageStorageClass(Image *image, const ClassType storage_class, ExceptionInfo *exception)
Definition: image.c:2595
MagickExport Image * DestroyImageList(Image *images)
Definition: list.c:475
#define MaxMap
Definition: magick-type.h:79
MagickExport MagickBooleanType SetImageExtent(Image *image, const size_t columns, const size_t rows, ExceptionInfo *exception)
Definition: image.c:2637
double variance_sum_of_squares[4]
Definition: feature.h:31
static size_t GetPixelChannels(const Image *magick_restrict image)
char filename[MagickPathExtent]
Definition: image.h:319
static MagickBooleanType IsAuthenticPixel(const Image *image, const ssize_t x, const ssize_t y)
Definition: feature.c:147
#define GetMagickModule()
Definition: log.h:28
ssize_t y
Definition: feature.c:143
double sy
Definition: geometry.h:95
MagickExport ChannelFeatures * GetImageFeatures(const Image *image, const size_t distance, ExceptionInfo *exception)
Definition: feature.c:623
#define ThrowImageException(severity, tag)
MagickExport CacheView * AcquireVirtualCacheView(const Image *image, ExceptionInfo *exception)
Definition: cache-view.c:149
MagickExport MagickSizeType GetBlobSize(const Image *image)
Definition: blob.c:1844
MagickExport ImageInfo * DestroyImageInfo(ImageInfo *image_info)
Definition: image.c:1231
double inverse_difference_moment[4]
Definition: feature.h:31
struct _CannyInfo CannyInfo
unsigned short Quantum
Definition: magick-type.h:86
unsigned int red
Definition: pixel.h:201
double maximum_correlation_coefficient[4]
Definition: feature.h:31
double difference_variance[4]
Definition: feature.h:31
MagickExport DrawInfo * DestroyDrawInfo(DrawInfo *draw_info)
Definition: draw.c:882
MagickExport void * AcquireMagickMemory(const size_t size)
Definition: memory.c:521
double magnitude
Definition: feature.c:136
MagickExport void AppendImageToList(Image **images, const Image *append)
Definition: list.c:80
static void SetPixelAlpha(const Image *magick_restrict image, const Quantum alpha, Quantum *magick_restrict pixel)
double measure_of_correlation_2[4]
Definition: feature.h:31
MagickExport void * RelinquishMagickMemory(void *memory)
Definition: memory.c:1123
#define MaxPixelChannels
Definition: pixel.h:27
PointInfo resolution
Definition: image.h:209
MagickExport Image * CannyEdgeImage(const Image *image, const double radius, const double sigma, const double lower_percent, const double upper_percent, ExceptionInfo *exception)
Definition: feature.c:237
MagickRealType green
Definition: pixel.h:190
MagickBooleanType(* MagickProgressMonitor)(const char *, const MagickOffsetType, const MagickSizeType, void *)
Definition: monitor.h:26
static void SetPixelRed(const Image *magick_restrict image, const Quantum red, Quantum *magick_restrict pixel)
#define MagickExport
MagickExport MagickBooleanType SyncCacheViewAuthenticPixels(CacheView *magick_restrict cache_view, ExceptionInfo *exception)
Definition: cache-view.c:1100
MagickExport CacheView * AcquireAuthenticCacheView(const Image *image, ExceptionInfo *exception)
Definition: cache-view.c:112
double y1
Definition: image.h:107
static Quantum GetPixelBlue(const Image *magick_restrict image, const Quantum *magick_restrict pixel)
MagickExport MagickRealType GetPixelIntensity(const Image *magick_restrict image, const Quantum *magick_restrict pixel)
Definition: pixel.c:2358
PixelInfo background_color
Definition: image.h:179
MagickExport Image * DestroyImage(Image *image)
Definition: image.c:1160
MagickExport Image * CloneImage(const Image *image, const size_t columns, const size_t rows, const MagickBooleanType detach, ExceptionInfo *exception)
Definition: image.c:775
double angular_second_moment[4]
Definition: feature.h:31
MagickExport void * GetBlobStreamData(const Image *image)
Definition: blob.c:1948
PixelInfo background_color
Definition: image.h:424
ColorspaceType colorspace
Definition: image.h:157
#define QuantumRange
Definition: magick-type.h:87
MagickExport MagickBooleanType SetImageProgress(const Image *image, const char *tag, const MagickOffsetType offset, const MagickSizeType extent)
Definition: monitor.c:136
MagickBooleanType debug
Definition: image.h:334
static void SetPixelGreen(const Image *magick_restrict image, const Quantum green, Quantum *magick_restrict pixel)
MagickExport MatrixInfo * DestroyMatrixInfo(MatrixInfo *matrix_info)
Definition: matrix.c:369